ADULT: MECHANICAL CIRCULATORY SUPPORT

Peripheral versus central extracorporeal membrane oxygenation for postcardiotomy shock: Multicenter registry, systematic review, and meta-analysis

Giovanni Mariscalco, MD, PhD,^a Antonio Salsano, MD, PhD,^b Antonio Fiore, MD,^c Magnus Dalén, MD, PhD,^d Vito G. Ruggieri, MD, PhD,^e Diyar Saeed, MD,^f Kristján Jónsson, MD, PhD,^g Giuseppe Gatti, MD,^h Svante Zipfel, MD,ⁱ Angelo M. Dell'Aquila, MD,^j Andrea Perrotti, MD, PhD,^k Antonio Loforte, MD, PhD,¹ Ugolino Livi, MD,^m Marek Pol, MD,ⁿ Cristiano Spadaccio, MD,^o Matteo Pettinari, MD,^p Sigurdur Ragnarsson, MD, PhD,^q Khalid Alkhamees, MD,^r Zein El-Dean, MRCS, LLM,^a Karl Bounader, MD,^s and Fausto Biancari, MD, PhD,^{t,u} the PC-ECMO group*

ABSTRACT

Background: We hypothesized that cannulation strategy in venoarterial extracorporeal membrane oxygenation (VA-ECMO) could play a crucial role in the perioperative survival of patients affected by postcardiotomy shock.

Methods: Between January 2010 and March 2018, 781 adult patients receiving VA-ECMO for postcardiotomy shock at 19 cardiac surgical centers were retrieved from the Postcardiotomy Veno-arterial Extracorporeal Membrane Oxygenation study registry. A parallel systematic review and meta-analysis (PubMed/MEDLINE, Embase, and Cochrane Library) through December 2018 was also accomplished.

Results: Central and peripheral VA-ECMO cannulation were performed in 245 (31.4%) and 536 (68.6%) patients, respectively. Main indications for the institution VA-ECMO were failure to wean from cardiopulmonary bypass (38%) and heart failure following cardiopulmonary bypass weaning (48%). The doubly robust analysis after inverse probability treatment weighting by propensity score demonstrated that central VA-ECMO was associated with greater hospital mortality (odds ratio 1.54; 95% confidence interval, 1.09-2.18), reoperation for bleeding/tamponade (odds ratio, 1.96; 95% confidence interval, 1.37-2.81), and transfusion of more than 9 RBC units (odds ratio, 2.42; 95% confidence interval, 1.59-3.67). The systematic review provided a total of 2491 individuals with postcardiotomy shock treated with VA-ECMO. Pooled prevalence of in-hospital/30-day mortality in overall patient population was 66.6% (95% confidence interval, 64.7-68.4%), and pooled unadjusted risk ratio analysis confirmed that patients undergoing peripheral VA-ECMO had a lower in-hospital/30-day mortality than patients undergoing central cannulation (risk ratio, 0.92; 95% confidence interval, 0.87-0.98). Adjustments for important confounders did not alter our results.

Conclusions: In patients with postcardiotomy shock treated with VA-ECMO, central cannulation was associated with greater in-hospital mortality than peripheral cannulation. (J Thorac Cardiovasc Surg 2020;160:1207-16)

Outcomes of central versus peripheral venoarterial extracorporeal membrane oxygenation.

CENTRAL MESSAGE

In postcardiotomy shock, peripheral cannulation for venoarterial extracorporeal membrane oxygenation may be associated with lower hospital mortality and complications than central cannulation.

PERSPECTIVE

The optimal cannulation strategy during venoarterial extracorporeal membrane oxygenation for patients affected by postcardiotomy shock remains controversial. Our study suggests that peripheral cannulation may provide better outcome than central cannulation. These data are corroborated by current literature.

See Commentaries on pages 1217, 1218, and 1220.

Postcardiotomy cardiogenic shock (PCS) is a fatal condition, affecting 0.5% to 1.5% of adult patients undergoing cardiac surgery.^{1,2} Venoarterial (VA) extracorporeal membrane oxygenation (ECMO) has been proven to be a valid rescue option for patients affected by PCS, providing temporary mechanical circulatory support and favoring

Check for updates

Abbreviation	s and Acronyms
CI	= confidence interval
CPB	= cardiopulmonary bypass
ECMO	= extracorporeal membrane
	oxygenation
IQR	= interquartile range
OR	= odds ratio
PC-ECMO	= Postcardiotomy Veno-arterial
	Extracorporeal Membrane
	Oxygenation study
PCS	= postcardiotomy cardiogenic shock
RBC	= red blood cell
RR	= risk ratio
VA	= venoarterial

Scanning this QR code will take you to the article title page to access supplementary information.

cardiopulmonary recovery and treatment of the underlying cardiac disease.^{3,4} However, complications following VA-ECMO support are not remote, and unfavorable outcomes are often observed.^{1,2} In this context, the "central" VA-ECMO access, with direct cannulation of the ascending aorta and right atrium, and the "peripheral" access, with cannulation of the femoral artery and vein, seem to contribute significantly to the outcome of patients with PCS managed with this mechanical support.⁵⁻¹⁹ The optimal cannulation strategy remains controversial, especially for its potential impact on myocardial recovery, rate of complications, and postoperative survival.⁵⁻²⁰

We report the results of the large multicenter Postcardiotomy Veno-arterial Extracorporeal Membrane Oxygenation study (PC-ECMO), analyzing the impact of VA-ECMO cannulation strategy in patients with PCS. A supporting systematic review and meta-analysis of studies, which considered the relationship between central/peripheral VA-ECMO cannulation and early outcomes in patients with PCS, is also presented.

METHODS

PC-ECMO Study Cohort

The PC-ECMO registry is an observational, multicenter cohort study that enrolled patients undergoing VA-ECMO following adult cardiac surgery at 19 centers from Belgium, Czech Republic, Finland, France, Germany, Italy, Saudi Arabia, Sweden, and the United Kingdom from January 2010 to March 2018. The present study is registered in Clinicaltrials.gov (Identifier: NCT03508505). Data were collected in a dedicated Access database (Microsoft, Inc, Redmond, Wash), and underwent cross-checking validation to ensure high data quality. Transcriptional discrepancies were harmonized; clinical and temporal conflicts and extreme values were corrected or removed.

The present study was approved by the regional or institutional review board of the participating centers, and it was not financially supported. The study complies with the Strengthening the Reporting of Observational Studies in Epidemiology reporting requirements for observational studies (Table E1).²¹

Study Design and Outcome Measures

Patients aged ≥18 years who required VA-ECMO for PCS following cardiac surgery were included. Exclusion criteria encompassed patients with preoperative VA-ECMO, or those receiving VA-ECMO after implantation of ventricular assist device or heart transplantation. Patients with an open or hybrid repair of the descending thoracic aorta were also excluded. For each patient, baseline characteristics, demographics, comorbidities, intraoperative factors, postoperative outcomes, and ECMO-related data were collected. Variables were defined according to the European System for Cardiac Operative Risk Evaluation II definition criteria and to the Extracorporeal Life Support Organisation registry.^{22,} A cut-off of 9 units of red blood cells (RBCs) as per the universal definition of perioperative bleeding in adult cardiac surgery was adopted as marker for massive bleeding.²⁴ The primary end point was in-hospital mortality. Main secondary end-points are defined in Appendix E1 (Outcome Definitions), and included death on VA-ECMO; reoperation for bleeding/ tamponade; RBC transfusion; postoperative neurologic, renal, cardiac, and gastrointestinal complications; vascular complications; sternal wound infection; and length of stay in the intensive care unit.

Medicine, Prague, Czech Republic; ^oDepartment of Cardiothoracic Surgery, Golden Jubilee National Hospital, Glasgow, United Kingdom; ^pDepartment of Cardiovascular Surgery, Ziekenhuis Oost-Limburg, Genk, Belgium; ^dDepartment of Cardiothoracic Surgery, University of Lund, Lund, Sweden; ⁱPrince Sultan Cardiac Center, Al Hassa, Saudi Arabia; ^sDivision of Cardiothoracic and Vascular Surgery, Pontchaillou University Hospital, Rennes, France; ⁱHeart Center, Turku University Hospital and University of Turku, Turku, Finland; and ^uDepartment of Surgery, University of Oulu, Oulu, Finland.

*Collaborators are listed at the end of the article.

Funding source: None.

Address for reprints: Giovanni Mariscalco, MD, PhD, Department of Cardiovascular Sciences, University of Leicester, Clinical Science Wing Glenfield Hospital, LE39QP Leicester, United Kingdom (E-mail: giovannimariscalco@yahoo.it). 0022-5223/\$36.00

Copyright © 2019 by The American Association for Thoracic Surgery https://doi.org/10.1016/j.jtcvs.2019.10.078

From the ^aDepartment of Cardiac Surgery, Glenfield Hospital, University Hospitals of Leicester, Leicester, United Kingdom; ^bDivision of Cardiac Surgery, Department of Integrated Surgical and Diagnostic Sciences (DISC), University of Genoa, Genoa, Italy; ^cDepartment of Cardiothoracic Surgery, Henri Mondor University Hospital, AP-HP, Paris-Est University, Créteil, France; dDepartment of Molecular Medicine and Surgery, Department of Cardiac Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; eDivision of Cardiothoracic and Vascular Surgery, Robert Debré University Hospital, Reims, France; ^fCardiovascular Surgery, University Hospital of Dusseldorf, Dusseldorf, Germany; ^gDepartment of Cardiac Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden; hDivision of Cardiac Surgery, Ospedali Riuniti, Trieste, Italy; ⁱHamburg University Heart Center, Hamburg, Germany; ^jDepartment of Cardiothoracic Surgery, Münster University Hospital, Münster, Germany; ^kDepartment of Thoracic and Cardio-Vascular Surgery, University Hospital Jean Minjoz, Besançon, France; 1Department of Cardiothoracic, Transplantation and Vascular Surgery, S. Orsola Hospital, University of Bologna, Bologna, Italy; "Cardiothoracic Department, University Hospital of Udine, Udine, Italy; "Institute of Clinical and Experimental

Received for publication May 8, 2019; revisions received Oct 4, 2019; accepted for publication Oct 4, 2019; available ahead of print Oct 31, 2019.

Systematic Review and Meta-Analysis

The review adhered to the Meta-Analysis of Observational Studies in Epidemiology and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines (Tables E2 and E3, respectively).^{25,26} Complete details, including electronic search strategy, objectives, criteria for study selection, eligibility, and data collection were published online and registered in the International Registry of Systematic Reviews PROS-PERO (CRD420160488140).²⁷ To summarize in brief, literature searches were systematically performed with electronic databases (PubMed/ MEDLINE, Embase, and Cochrane Library) without date or language restriction from inception to the end of December 2018. References of all eligible studies and review articles were also screened to identify relevant resources that were not previously recognized. Only studies comparing central versus peripheral arterial ECMO cannulation in patients affected by PCS after cardiac surgery were considered for this analysis. The primary outcome of interest was all-cause mortality in-hospital or within 30 days from the index surgical procedure. Inclusion and exclusion criteria for qualitative/quantitative analyses were summarized according to the PICOS (Population, Intervention, Comparator, Outcomes, and Study design) approach (Table E4). Year of publication, study design, country, sample size, recruitment period, number of patients in each treatment group, inclusion and exclusion criteria, measured outcomes, baseline patient demographics, cardiac status, comorbidities, and outcomes were extracted. Reasons for exclusion were also documented (Table E5). Finally, study quality was assessed using the Newcastle-Ottawa Scale and the US Preventive Services Task Force criteria.^{28,29} The Cochrane Risk of Bias tool was also used to evaluate the methodological quality of all included studies.³⁰

Statistical Analysis

Analyses we conducted according to the intention-to-treat-analysis. In the PC-ECMO study, covariates and outcomes were reported as counts and percentages, and as mean and standard deviation or median and interquartile range (IQR). Unpaired *t* test, Mann–Whitney *U* test, Fisher exact test, χ^2 test, and Kruskal–Wallis tests were used for univariable analyses, as appropriate.

A covariate balancing propensity score was developed to minimize the covariate imbalance between the central and the peripheral VA-ECMO cohorts.³¹ In our study, a total of 67 covariates including preoperative baseline, operative characteristics, indications for VA-ECMO and timing of ECMO insertion were used in the model. The full list of these covariates is listed in Table 1, and Tables E6 and E7. Using the estimated propensity scores as weights, we used an inverse probability weighting model to generate a weighted cohort.³² C-statistics were calculated to ascertain the validity of the propensity score. Finally, to adjust for confounding related to the central and peripheral VA-ECMO insertion, a doubly robust method that combines regression model with inverse probability treatment weighting by propensity score was adopted to estimate the causal effect of the exposure on the outcomes of interest.³³ Statistical analyses were performed using the cobalt package of R software (version 3.5.1; R Foundation for Statistical Computing, Vienna, Austra).^{34,35}

In the meta-analysis, outcomes of interest were reported as risk ratio (RR) with a 95% confidence interval (CI), using the Mantel–Haenszel method or as pooled prevalence of adverse outcome.³⁶ I² statistic was used to estimate the percentage of total variation across studies attributed to heterogeneity rather than chance.³⁷ The Cochran Q test for heterogeneity was applied.³⁰ Publication bias was evaluated using visual inspection of funnel plot asymmetry and by Egger's test.³⁸ The impact of age, sex, pulmonary disease, coronary artery bypass grafting, previous cardiac surgery, intra-aortic balloon pump (VA-ECMO) during VA-ECMO support, and delayed VA-ECMO implantation on in-hospital/30-day mortality was evaluated by meta-regression. Finally, to account for inherent patient selection bias related with the observational design of the included studies, risk-adjusted estimates for odds ratios (ORs) for in-hospital/30-day mortality

were obtained when reported, and pooled adjusted risk estimates were computed by using log transformation and a generic inverse variance weighting method. For the meta-analysis, analyses were conducted using the metafor and meta packages of R software (version 3.5.1; R Foundation for Statistical Computing).^{34,39-41} P < .05 was used as the level of significance for all tests.

RESULTS

PC-ECMO Study Cohort

The patient population comprised a total of 781 patients with a mean age of 63.1 ± 12.9 years (range: 18.4-86.7), and 32% were women. Baseline characteristics are detailed in Tables E4 and E6. Central and peripheral ECMO cannulation were performed in 245 (31.4%) and 536 (68.6%) patients, respectively. Among centers, the prevalence of peripheral and central cannulation varied from 25% to 94% and from 5% to 69%, respectively. Data regarding indications, timing, and cannulation, are detailed in Table E7. Main indications for VA-ECMO implantation included failure to wean from cardiopulmonary bypass (CPB, 38%), and heart failure following CPB weaning (48%). A greater proportion of patients received central cannulation in case VA-ECMO was inserted immediately after surgery (P < .001), and peripheral cannulation was predominantly initiated later after surgery (P < .01). Left ventricular venting and intra-aortic balloon pump were more frequently adopted in the central cannulation group (18% vs 3.5%, P < .001and 46.5% ws 30.6%, P < .001, respectively). Twentythree (9.4%) patients were switched from central to peripheral cannulation to allow definitive chest closure.

Overall, patients receiving peripheral and central VA-ECMO cannulation exhibited different demographic, clinical, and operative characteristics (Tables E6 and E7). To summarize in brief, the central group was younger ($61.5 \pm 14.0 \text{ vs } 63.9 \pm 12.3$, P = .019) and had longer CPB duration (median 220 minutes [IQR, 150-308 minutes] vs median 200 minutes [IQR, 123-280 minutes]; P = .012).

Outcome data are summarized in Table 2 and in Table E8, and full details of the overall population after exclusion of patients switched from central to peripheral cannulation are detailed in Tables E9 to E12. As shown in Tables E9 and E13 and in Figures E1 to E3, all the covariates of the weighted cohort were balanced between groups. The C statistics of the propensity score for VA-ECMO cannulation were 0.7499. Under the doubly robust estimation framework, the regression models demonstrated that central VA-ECMO was associated with a significantly greater risk of in-hospital mortality (OR, 1.54; 95% CI, 1.09-2.18; P = .02), reoperation for bleeding/tamponade (OR, 1.96; 95% CI, 1.37-2.81; P < .001), and transfusion of more than 9 RBC units (OR, 2.42; 95% CI, 1.59-3.67; P < .001) (Figure 1). Peripheral VA-ECMO was instead associated with longer hospital stay (linear regression estimate, -5.79; standard error, 2.49; P = .02), vascular access-

	Overall series						
Variables†	Peripheral VA-ECMO, $n = 536$ patients	Central VA-ECMO, n = 245 patients	P value				
Age, y	63.9 ± 12.3	61.5 ± 14.1	.019				
Female	172 (32.1)	77 (31.4)	.92				
BMI, kg/m ²	26.7 [23.9-30.0]	26.5 [23.3-29.8]	.53				
BMI >30 kg/m ²	136 (25.4)	61 (24.9)	.96				
Presentation and cardiac status							
Urgent/emergent procedure	288 (53.7)	127 (51.8)	.68				
Preoperative IABP	41 (7.6)	21 (8.6)	.76				
Previous cardiac surgery	123 (22.9)	63 (25.7)	.45				
CCS angina class IV	99 (18.5)	54 (22.0)	.29				
NYHA class III-IV	354 (66.0)	152 (62.0)	.31				
Previous MI	181 (33.8)	96 (39.2)	.17				
Previous PCI	105 (19.6)	41 (16.7)	.39				
LVEF 21%-30%	89 (16.6)	47 (19.2)	.44				
LVEF <21%	41 (7.6)	26 (10.6)	.22				
Comorbidities							
Diabetes	131 (24.4)	69 (28.2)	.31				
Hemoglobin, g/L	125.6 ± 21.5	124.6 ± 22.7	.54				
eGFR, mL/min/1.73 m ²	66.5 [49.1-85.3]	65.0 [45.1-82.8]	.31				
Dialysis	25 (4.7)	7 (2.9)	.32				
Stroke	39 (7.3)	21 (8.6)	.63				
Extracardiac arteriopathy	77 (14.4)	43 (17.6)	.29				
Pulmonary disease	73 (13.6)	37 (15.1)	.66				
Atrial fibrillation	143 (26.7)	49 (20.0)	.055				
EuroSCORE II, score	9.05 [3.63-9.48]	9.02 [3.37-26.83]	.42				

TABLE 1.	Baseline charae	cteristics patients r	eceiving peripheral	l and central car	nnulation in the	overall series*
----------	-----------------	-----------------------	---------------------	-------------------	------------------	-----------------

VA-ECMO, Venoarterial extracorporeal membrane oxygenation; *BMI*, body mass index; *IABP*, intra-aortic balloon pump; *CCS*, Canadian Cardiovascular Society (class); *NYHA*, New York Heart Association (class); *MI*, myocardial infarction; *PCI*, percutaneous coronary intervention; *LVEF*, left ventricular ejection fraction; *eGFR*, estimated glomerular filtration rate; *EuroSCORE II*, European System for Cardiac Operative Risk Evaluation II. *Full baseline characteristics and operative data with standardized differences for the overall series are detailed in Table E3. †Continuous data are presented as mean ± standard deviation or median [interquartile range]; categorical variables as number (percent).

site infections (OR, 3.98 95% CI, 1.70-9.34; P = .002), liver failure (OR, 1.52 95% CI, 1.09-2.33; P = .02), and sepsis (OR, 1.56 95% CI, 1.01-2.841; P = .05). No differences were observed between the 2 groups with reference to peripheral vascular complications (OR, 0.80; 95% CI, 0.43-1.48, P = .47) or other organ dysfunctions. Outcomes did not change after the exclusion of patients switched from central to peripheral cannulation to allow for definitive chest closure (Table E12), and the year of operation did not impact on mortality (range: 58%-85%, P = .26; Figure E4).

Finally, the relationship between hospital volume and VA-ECMO was also analyzed, and centers with greater experience with postcardiotomy VA-ECMO (>50 cases of postcardiotomy VA-ECMO during the study period) less frequently used the central cannulation approach (24.7% vs 42.9%, P < .0001), although no differences in outcomes were observed (Table E14).

Sensitivity analyses and variable interactions that considered sex, age, previous cardiac surgery, preoperative left ventricular ejection fraction, coronary artery bypass grafting, history of stroke, urgent/emergent status, and arterial lactate pre-ECMO insertion \geq 6 mmol/L showed that central cannulation impacted on in-hospital mortality in the absence of significant interactions with these covariates (Figure 2). The timing of ECMO insertion did not interact with the cannulation strategy in influencing hospital mortality and other secondary outcomes (Table E15 and Figures E2 and E3).

Systematic Review and Meta-Analysis

A literature search yielded a total of 6286 records, and 15 retrospective studies (2 multicenter, 13 single-center) published between 2005 and 2016 were finally included in the systematic review and meta-analysis (Figure E5).⁶⁻¹⁹ Study characteristics and collected outcomes for patients with PCS undergoing VA-ECMO support are summarized in Tables E16-E18, and study quality assessment in Table E19. Including the PC-ECMO study cohort, the final population for the meta-analysis comprised

	0	verall series	Doubly robust adjustment‡			
	Peripheral VA-ECMO,	Central VA-ECMO,				
Variables†	n = 536 patients	n = 245 patients	P value	Odds ratio	95% CI	P value
Primary end point						
In-hospital mortality	327 (61.0)	176 (71.8)	.004	1.54	1.09-2.18	.02
Secondary end points						
Reoperation for bleeding/tamponade	191 (35.6)	137 (55.9)	<.001	1.96	1.37-2.81	<.001
Stroke	93 (17.4)	55 (22.4)	.11	1.11	0.72-1.71	.65
Dialysis	286 (53.4)	123 (50.2)	.29	0.84	0.60-1.19	.34
Liver failure	205 (38.2)	60 (24.5)	<.001	0.63	0.43-0.92	.02
Multiorgan failure	279 (52.1)	111 (45.3)	.09	0.85	0.60-1.21	.37
DSWI	19 (3.5)	10 (4.1)	.87	1.00	0.41-2.43	.99
Vascular access-site infection	60 (11.2)	7 (2.9)	<.001	0.25	0.11-0.59	.002
Sepsis	140 (26.1)	39 (15.9)	.002	0.64	0.42-0.99	.05
Peripheral vascular complications	49 (9.1)	20 (8.2)	.76	0.80	0.43-1.48	.47
RBC units transfused, u	15.0 [7.0-28.0]	21.0 [12.0-38.0]	<.001	5.56§	2.07§	.007§
More than 9 RBC units transfused	344 (64.2)	203 (82.9)	<.001	2.42	1.59-3.67	<.001
Chest drains 24 h-output, mL	780 [500-1450]	1389 [750-2500]	<.001	622.52§	132.76§	<.001§
ICU stay, d	12.0 [5.0-24.0]	11.0 [5.0-21.0]	.31	-1.26§	1.57§	.42§
Hospital stay, d	17.0 [5.8-35.0]	13.0 [5.0-27.0]	.04	-5.79§	2.49§	.02§
More than 10 d on VA-ECMO	128 (23.9)	57 (23.3)	.92	0.83	0.55-1.27	.40
Successful weaning from VA-ECMO	271 (50.6)	108 (44.1)	.11	0.74	0.53-1.06	.10
Postoperative VAD or heart transplant	17 (3.2)	12 (4.9)	.33	1.79	0.82-3.93	.14

TABLE 2. Outcomes between patients receiving peripheral/central cannulation, and the doubly robust matching estimators for confounding adjustment*

VA-ECMO, Venoarterial extracorporeal membrane oxygenation; *CI*, confidence interval; *DSWI*, deep sternal wound infection; *RBC*, red blood cell; *ICU*, intensive care unit; *VAD*, ventricular assist device. *Full outcomes data in the overall series and the doubly robust matching estimators for confounding adjustment are detailed in Table E5. †Continuous data are presented as mean (standard deviation) or median [interquartile range]; categorical variables as number (percent). ‡Reference for the events: central VA-ECMO group. §Linear regression has been expressed as standard regression coefficient, standard error, and *P* value.

2491 patients. Pooled prevalence of in-hospital/30-day mortality in the overall patient population was 66.6% (95% CI, 64.7-68.4%). Pooled unadjusted RRs showed that patients with PCS undergoing peripheral VA-ECMO had a lower in-hospital/30-day mortality when compared with those undergoing central cannulation (RR, 0.92; 95% CI, 0.87-0.98; P = .011; Figure 3). Low heterogeneity among studies $(I^2 = 4\%)$ was observed, and funnel plots revealed no evidence of publication bias (P = .41;Figure E6). To evaluate the robustness of the associated results, we performed a leave-one-out sensitivity analysis by iteratively removing one study at a time and recalculating the summary RRs. A beneficial effect of the peripheral VA-ECMO in terms of reduced in-hospital/ 30-day mortality was observed by removing the study of Rastan and colleagues,⁶ an outlier in term of in-hospital mortality (Figure E7). Again, peripheral VA-ECMO was associated with lower in-hospital/30-day mortality than central VA-ECMO (RR, 0.88; 95% CI, 0.82-0.95; P = .0005), but no heterogeneity was observed ($I^2 = 0\%$, Figure E8). Overall, 2 studies with the present one reported on adjusted effect size of VA-ECMO cannulation site on mortality (Table E18).^{6,11} Adjusted risk estimates of in-hospital/30-day mortality revealed no differences in

in-hospital/30-day mortality between the 2 cohorts of patients (RR, 1.27; 95% CI, 0.88-1.83; P = .21, Figure E9).

Pooled estimates also demonstrated that peripheral VA-ECMO cannulation was also associated with a lower rate of reoperation for bleeding/tamponade (RR, 0.63; 95% CI, 0.54-0.73; $I^2 = 0\%$). No differences were observed for neurologic events (RR, 0.79; 95% CI, 0.59-1.05; $I^2 = 0\%$) and lower-limb complications (RR, 1.60; 95% CI, 0.99-2.89; $I^2 = 32.7\%$) between peripheral and central cannulation (Figures E9-E11). Meta-regression analysis confirmed that covariates did not represent a source of heterogeneity (Figure E12).

DISCUSSION

In the present cohort study, patients with PCS treated with peripheral VA-ECMO had better in-hospital survival than those with central cannulation. This observation was supported by a large systematic review of 15 studies that included nearly 2500 patients from 15 countries and by a sensitivity analyses that have also substantiated these observations in older patients, in those with severe coronary artery disease, reduced left ventricular function, pre-ECMO organ failure, and in patients requiring complex and urgent/emergent cardiac operations.

Peripheral VA-ECMO Central VA-ECMO
FIGURE 1. Central VA-ECMO is associated with greater in-hospital mortality, reopening for bleeding, and blood transfusion than peripheral cannulation in patients affected by postcardiotomy shock following cardiac surgery. The obtained doubly robust estimates (OR and 95% confidence intervals) with inverse probability treatment weighting by propensity score are shown for the main outcomes (group of reference: central cannulation). VA-ECMO, Venoar-

terial extracorporeal membrane oxygenation; RBC, red blood cells; OR, odds ratio; CI, confidence intervals.

The aforementioned results are important in light of the increasing use of ECMO for refractory PCS, providing temporary circulatory support, allowing myocardial recovery as well as bridging of patients for further diagnostic and therapeutic options.¹⁻⁴ However, despite refinements in ECMO components and improvements in intensive care unit management, mortality remains high, ranging from 43% to 85%, even in patients who were successfully weaned from VA-ECMO.⁶⁻¹⁹ The rate of complications is also not negligible, including multiorgan failure, bleeding, vascular complications, and infections.⁶⁻¹⁹ As a consequence, several efforts have been made to identify risk factors that are most likely associated with poor outcomes following ECMO initiation. In this context, the optimal cannulation strategy for VA-ECMO in terms of in-hospital mortality and complications remains unsettled.⁶⁻²⁰ Central configuration favors better cardiac unloading with an antegrade flow and multiple options for left ventricular venting, although greater risks of bleeding, cerebral emboli, systemic infections, and cardiac often encountered.⁶⁻²⁰ Peripheral compression are cannulation is faster and less invasive, allowing for sternal closure and early extubation, which are beneficial in terms of bleeding and infections, whereas suboptimal venous drainage and left ventricular unloading, Harlequin

syndrome, compromised ECMO flow, and vascular complications are the typical drawbacks.^{6,20} Ko and colleagues⁵ first investigated the impact of ECMO delivered by different cannulation routes in the outcomes of 76 patients affected by PCS, concluding that the underlying cardiac disease rather than the cannulation site influenced patient outcomes. Similarly, Rastan and colleagues⁶ reported the lack of clinical benefits exerted by the cannulation strategy in a cohort of 517 adult patients with PCS treated with VA-ECMO. Consonant data have been recently observed by Raffa and colleagues²⁰ in a meta-analysis of peripheral versus central ECMO. However, patients affected by postcardiotomy and non-postcardiotomy shock were indistinctly included, hindering the generalizability of their results in the specific setting of refractory PCS following cardiac surgery.²⁰

In our cohort study and the accompanying systematic review with meta-analysis, we included only patients who were affected by PCS following cardiac surgery and treated with VA-ECMO support. The greater rate of major bleeding, chest reopening for bleeding/tamponade, and the need for a large amount of blood product transfusions encountered in the central cannulation group seemed to play a harmful role in patient survival. Administration of large volumes of blood products is unavoidably related to

	Per	ipheral	Ce	entral		
Variable	Ν	[CER]	Ν	[EER]	OR [95% CI] P Interaction	n
Overall	327	(61.0)	176	(71.8)	• • • 1.63 (1.17-2.26)	
Gender					.2379	
Male	216	(40.3)	114	(46.5)	1.45 (0.98-2.13)	
Female	111	(20.7)	62	(25.3)	• 2.27 (1.19-4.33)	
Age Classes					.2744	
≤60	73	(13.6)	55	(22.4)	• 2.18 (1.27-3.76)	
>60	254	(47.4)	121	(49.4)	1.49 (0.98-2.27)	
Prior Cardiac Surg	ery				.6951	
No	242	(45.1)	128	(52.2)	• 1.67 (1.15-2.43)	
Yes	85	(15.9)	48	(19.6)	• 1.43 (0.71-2.87)	
CABG		. ,			.3675	
No	162	(30.2)	81	(33.1)	• 1.89 (1.17-3.04)	
Yes	165	(30.8)	95	(38.8)	• 1.39 (0.88-2.20)	
LVEF					.9637	
≥50	143	(26.7)	66	(26.9)	• <u>1.63 (0.95-2.80)</u>	
<50	184	(34.3)	110	(44.9)	• 1.66 (1.10-2.51)	
Arterial lactate ≥6	mmol/L				.6496	
No	136	(25.4)	76	(31.0)	• 1.42 (0.91-2.23)	
Yes	176	(32.8)	81	(33.1)	• 1.67 (0.98-2.87)	
Urgent/Emergent F	Procedur	е			.6306	
No	157	(29.3)	85	(34.7)	• 1.49 (0.93-2.41)	
Yes	170	(31.7)	91	(37.1)	• 1 .75 (1.12-2.76)	
				0	Odds Batio	
					(Peripheral versus central VA-ECMO)	
					() p · · · · · · · · · · · · · · · · · ·	

FIGURE 2. Subgroup analysis with reference to in-hospital mortality. Comparison is made between peripheral (reference group) and central VA-ECMO cannulation. *CER*, Control event rate; *EER*, experimental event rate; *OR*, odds ratio; *CI*, confidence interval; *CABG*, coronary artery bypass grafting; *LVEF*, left ventricular ejection fraction; *VA-ECMO*, venoarterial extracorporeal membrane oxygenation.

the risks of transfusion-associated circulatory overload, and transfusion-related acute lung injury, both potentially fatal conditions especially in patients with an already-impaired cardiac function.^{42,43} In our series, 80% of the patients with central cannulation required transfusion of more than 9 RBC units, and an indirect negative impact on patient outcomes has been reported even after transfusion of as little as 1 or 2 RBC units.⁴⁴ Therefore, the correlation between central cannulation and greater in-hospital mortality observed in both our cohort study and in the systematic review is not surprising. As a matter of fact, bleeding, transfusion, and reopening for bleeding/tamponade have been already recognized as common complications of the central VA-ECMO strategy.^{5,9} Mikus and colleagues⁹ reported a 95% rate of reopening for bleeding/tamponade in the central group, with a median number of 39 and 18 units of RBC and fresh-frozen plasma units transfused, respectively. Decreased blood component use in this patient population has also been proven to decrease complications and improve survival, although a conservative transfusion

policy is difficult in this very critically ill patient population.⁴⁵ Therefore, the potential beneficial aspects of the central ECMO cannulation with antegrade flow, improved cardiac drainage, reduced cardiac compression (in case of open-chest), seem to be not justified by the present data, in that, these aspects have been largely overcome by the associated detrimental effects of major bleeding and blood transfusions.

Interestingly, although peripheral cannulation was associated with a greater risk of vascular-site infections, this did not translate into reduced in-hospital survival. This observation is consistent with other published studies,^{5,10,13} where the routine use of small cannula size, distal perfusion cannulas, and insertion of vascular grafts played a beneficial role. Another interesting finding from our study is the lack of differences in terms of hemodynamics and end-organ dysfunction between the 2 ECMO cannulation strategies. Saeed and colleagues⁴⁶ investigated the influence of femoro-femoral versus atrio-aortic ECMO on metabolic and hemodynamic data

	Periph	neral	Cent	ral				Weight	Weight
Study	Events	Total	Events	Total	Risk Ratio	RR	95% CI	(fixed)	(random)
Ko et al. 2002 ⁵	45	61	11	15		1.01	[0.72; 1.41]	2.6%	3.2%
Rastan et al. 2010 ⁶	154	203	235	314		1.01	[0.92; 1.12]	26.7%	30.0%
Pokersnik et al. 2012 ⁷	22	32	11	17		1.06	[0.70; 1.62]	2.1%	2.1%
Unosowa et al. 2012 ⁸	11	32	7	15		0.74	[0.36; 1.52]	1.4%	0.7%
Mikus et al. 20139	3	7	4	7		0.75	[0.26; 2.18]	0.6%	0.3%
Loforte et al. 2014 ¹⁰	31	62	32	56	_	0.88	[0.62; 1.23]	4.9%	3.3%
Papadopoulos et al. 2015 ¹¹	225	324	27	36		0.93	[0.76; 1.13]	7.0%	8.8%
Zhao et al. 2015 ¹²	15	23	1	1	<u> </u>	0.66	[0.49; 0.88]	0.4%	4.4%
Khorsandi et al. 2016 ¹³	6	9	9	14		1.04	[0.57; 1.90]	1.0%	1.0%
Mazzeffi et al. 2016 ¹⁴	5	9	11	14		0.71	[0.37; 1.35]	1.2%	0.9%
Biancari et al. 2017 ¹⁵	56	89	39	59		0.95	[0.75; 1.21]	6.8%	6.2%
Guihaire et al. 2017 ¹⁶	49	78	9	14		0.98	[0.64; 1.50]	2.2%	2.1%
Raffa et al. 2017 ¹⁷	35	56	19	27		0.89	[0.65; 1.22]	3.7%	3.7%
Slottosh et al. 201718	52	72	19	28		1.06	[0.79; 1.43]	4.0%	4.3%
Zhong et al. 2017 ¹⁹	16	29	2	7		1.93	[0.57; 6.52]	0.5%	0.3%
PC-ECMO Study 2018	327	536	176	245		0.85	[0.77; 0.94]	35.0%	28.6%
Fixed effects model		1622		869	1	0.93	[0.88; 0.99]	100.0%	
Random effects model						0.92	[0.87; 0.98]		100.0%
Test for overall effect: Fixed effects $P = .0188$;				0.2	0.5 1 2 5				
Test for heterogeinity: $\tau^2 = 0.0$	0007; P = 4	%; <i>P</i> = .4	1	Favou	rs Peripheral Favours Centra	I			
6 7 7 7 7					In-hospital/30-day mortality				

FIGURE 3. Forest plot with risk estimates for in-hospital/30-day mortality. RR, Risk ratio; CI, confidence interval.

in a series of 52 patients affected by cardiogenic shock, respiratory distress syndrome, and pulmonary embolism. No differences in terms of hemodynamics, arterial blood gas values, and end-organ function were observed between groups.⁴⁶ Kanji and colleagues⁴⁷ confirmed similar mean peak lactate levels in both the peripheral and central cannulation populations. Finally, although we did not document any significant difference in terms of neurologic, renal, and lung complications between the 2 cannulation strategies, an increased risk of liver failure was observed in the peripheral ECMO cannulation cohort, possibly due to the associated suboptimal venous drainage and compromised ECMO flow as opposed to central venous drainage.⁶ Similarly, a greater rate of sepsis, probably driven by vascular access-site infections, was also observed in the peripheral patient cohort.

Our cohort study is not exempted from several limitations, although it is the largest registry evaluating the impact of ECMO cannulation strategy in the PCS setting. First, because of the observational nature of our registry, the present analysis is subjected to all limitations inherent to a nonrandomized study. Nevertheless, the PC-ECMO registry included a large number of baseline and ECMOrelated parameters as well as a consecutive series of patients treated in teaching and regional tertiary hospitals from different countries. This allowed the capture of a more-inclusive patient population in centers with different referral pathways, preoperative selection criteria, and treatment strategies, rendering these results generalizable in different health care systems. Second, the limited number of patients in each subgroup prevented an adequate analysis of interinstitutional differences in terms of ECMO management and weaning protocols. Similarly, the impact of variables such as the axillary cannulation, the conversion from central to peripheral cannulation to allow primary chest closure on outcomes, and the left ventricular unloading impact were not addressed in the present analysis; a limitation shared with all previously published experiences.⁵⁻¹⁹ Third, we do not have data on whether the decision to leave the chest open and maintain central cannulation was dictated by poorer patient conditions or excessive edema of the intrathoracic organs. Similarly, the meta-analysis has its own limitations. Principally, we were able to include a limited number of studies focusing on the impact of ECMO cannulation strategies among those effectively screened. The heterogeneity of the populations included, and the unclear inclusion/exclusion criteria prevented us from conducting a large study analysis.⁵⁻¹⁹ Finally, owing to the emergent nature of PCS, no randomized trials of peripheral versus central ECMO cannulation were retrieved, therefore limiting our qualitative and quantitative analysis to observational studies only, often with limited sample size. The metaanalysis also had limitations. Principally, only a limited

number of studies focusing on the outcome differences between central and peripheral VA-ECMO was included. Despite the fact that risk-adjusted estimates were obtained, we cannot exclude the presence of residual confounding factors between the peripheral and central VA-ECMO cohorts.

In summary, in the context of refractory PCS following cardiac surgery, peripheral VA-ECMO cannulation was associated with reduced in-hospital mortality, lower risk of reoperation for bleeding/tamponade, perioperative bleeding, and blood transfusion requirements. Peripheral and central accesses in VA-ECMO revealed comparable results in terms of neurologic, renal, pulmonary, and other complications.

Conflict of Interest Statement

Authors have nothing to disclose with regard to commercial support.

Collaborators: Susan Dashey, FRCA; Hakeem Yusuff, FRCA; Richard Porter, FRCA; Caroline Sampson, FRCA; Chris Harvey, FRCA (Department of Cardiovascular Surgery and Anaesthesia and Critical Care, Glenfield Hospital, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom); Nicla Settembre (Department of Vascular Surgery, Nancy University Hospital, University of Lorraine, Nancy, France); Thomas Fux, MD, PhD (Department of Molecular Medicine and Surgery, Department of Cardiac Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden); Gilles Amr, MD (Division of Cardiothoracic and Vascular Surgery, Robert Debré University Hospital, Reims, France); Artur Lichtenberg, MD, PhD (Cardiovascular Surgery, University Hospital of Duesseldorf, Dusseldorf, Germany); Anders Jeppsson, MD, PhD (Department of Cardiac Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden); Marco Gabrielli, MD (Division of Cardiac Surgery, Ospedali Riuniti, Trieste, Italy); Daniel Reichart, MD (Hamburg University Heart Center, Hamburg, Germany); Henryk Welp, MD (Department of Cardiothoracic Surgery, Münster University Hospital, Münster, Germany); Sidney Chocron, MD (Department of Thoracic and Cardio-Vascular Surgery, University Hospital Jean Minjoz, Besançon, France); Mariafrancesca Fiorentino, MD (Department of Cardiothoracic, Transplantation and Vascular Surgery, S. Orsola Hospital, University of Bologna, Bologna, Italy); Andrea Lechiancole, MD (Cardiothoracic Department, University Hospital of Udine, Udine, Italy); Ivan Netuka, MD (Institute of Clinical and Experimental Medicine, Prague, Czech Republic); Dieter De Keyzer, MD, and Maarten Strauven, MD (Department of Cardiovascular Surgery, Ziekenhuis Oost-Limburg, Genk, Belgium); and Kristiina Pälve, MD (Heart Center, Turku University Hospital and University of Turku, Turku, Finland).

References

 Smedira NG, Moazami N, Golding CM, McCarthy PM, Apperson-Hansen C, Blackstone EH, et al. Clinical experience with 202 adults receiving extracorporeal membrane oxygenation for cardiac failure: survival at five years. *J Thorac Cardiovasc Surg.* 2001;122:92-102.

- Doll N, Kiaii B, Borger M, Bucerius J, Krämer K, Schmitt DV, et al. Five-year results of 219 consecutive patients treated with extracorporeal membrane oxygenation for refractory postoperative cardiogenic shock. *Ann Thorac Surg.* 2004;77:151-7.
- van Diepen S, Katz JN, Albert NM, Henry TD, Jacobs AK, Kapur NK, et al. Contemporary management of cardiogenic shock: a scientific statement from the American Heart Association. *Circulation*. 2017;136: e232-68.
- Lawler PR, Silver DA, Scirica BM, Couper GS, Weinhouse GL, Camp PC Jr. Extracorporeal membrane oxygenation in adults with cardiogenic shock. *Circulation*. 2015;131:676-80.
- Ko WJ, Lin CY, Chen RJ, Wang SS, Lin FY, Chen YS. Extracorporeal membrane oxygenation support for adult postcardiotomy cardiogenic shock. *Ann Thorac* Surg. 2002;73:538-45.
- Rastan AJ, Dege A, Mohr M, Doll N, Falk V, Walther T, et al. Early and late outcomes of 517 consecutive adult patients treated with extracorporeal membrane oxygenation for refractory postcardiotomy cardiogenic shock. *J Thorac Cardio*vasc Surg. 2010;139:302-11.
- Pokersnik JA, Buda T, Bashour CA, Gonzalez-Stawinski GV. Have changes in ECMO technology impacted outcomes in adult patients developing postcardiotomy cardiogenic shock? J Card Surg. 2012;27:246-52.
- Unosawa S, Sezai A, Hata M, Nakata K, Yoshitake I, Wakui S, et al. Longterm outcomes of patients undergoing extracorporeal membrane oxygenation for refractory postcardiotomy cardiogenic shock. *Surg Today.* 2013;43: 264-70.
- Mikus E, Tripodi A, Calvi S, Giglio MD, Cavallucci A, Lamarra M. CentriMag venoarterial extracorporeal membrane oxygenation support as treatment for patients with refractory postcardiotomy cardiogenic shock. *ASAIO J.* 2013;59: 18-23.
- 10. Loforte A, Marinelli G, Musumeci F, Folesani G, Pilato E, Martin Suarez S, et al. Extracorporeal membrane oxygenation support in refractory cardiogenic shock: treatment strategies and analysis of risk factors. *Artif Organs*. 2014;38:E129-41.
- Papadopoulos N, Marinos S, El-Sayed Ahmad A, Keller H, Meybohm P, Zacharowski K, et al. Risk factors associated with adverse outcome following extracorporeal life support: analysis from 360 consecutive patients. *Perfusion*. 2015;30:284-90.
- Zhao Y, Xing J, Du Z, Liu F, Jia M, Hou X. Extracorporeal cardiopulmonary resuscitation for adult patients who underwent post-cardiac surgery. *Eur J Med Res.* 2015;20:83.
- 13. Khorsandi M, Dougherty S, Sinclair A, Buchan K, MacLennan F, Bouamra O, et al. A 20-year multicentre outcome analysis of salvage mechanical circulatory support for refractory cardiogenic shock after cardiac surgery. J Cardiothorac Surg. 2016;11:151.
- Mazzeffi MA, Sanchez PG, Herr D, Krause E, Evans CF, Rector R, et al. Outcomes of extracorporeal cardiopulmonary resuscitation for refractory cardiac arrest in adult cardiac surgery patients. *J Thorac Cardiovasc Surg.* 2016;152: 1133-9.
- Biancari F, Dalén M, Perrotti A, Fiore A, Reichart D, Khodabandeh S, et al. Venoarterial extracorporeal membrane oxygenation after coronary artery bypass grafting: Results of a multicenter study. *Int J Cardiol.* 2017;241: 109-14.
- 16. Guihaire J, Dang Van S, Rouze S, Rosier S, Roisne A, Langanay T, et al. Clinical outcomes in patients after extracorporeal membrane oxygenation support for post-cardiotomy cardiogenic shock: a single-centre experience of 92 cases. *Interact Cardiovasc Thorac Surg.* 2017;25:363-9.
- 17. Raffa GM, Gelsomino S, Sluijpers N, Meani P, Alenizy K, Natour E, et al. In-hospital outcome of post-cardiotomy extracorporeal life support in adult patients: the 2007-2017 Maastricht experience. *Crit Care Resusc.* 2017; 19(suppl 1):53-61.
- Slottosch I, Liakopoulos O, Kuhn E, Scherner M, Deppe AC, Sabashnikov A, et al. Lactate and lactate clearance as valuable tool to evaluate ECMO therapy in cardiogenic shock. *J Crit Care*. 2017;42:35-41.
- Zhong Z, Jiang C, Yang F, Hao X, Xing J, Wang H, et al. Veno-arterial extracorporeal membrane oxygenation support in patients undergoing aortic surgery. *Artif Organs*. 2017;41:1113-20.
- Raffa GM, Kowalewski M, Brodie D, Ogino M, Whitman G, Meani P, et al. Meta-Analysis of peripheral or central ECMO in postcardiotomy and nonpostcardiotomy shock. Ann Thorac Surg. 2019;107:311-21.
- von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP; STROBE Initiative. The Strengthening the Reporting of Observational Studies in

Epidemiology (STROBE) statement: guidelines for reporting observational studies. *Lancet*. 2007;370:1453-7.

- Nashef SA, Roques F, Sharples LD, Nilsson J, Smith C, Goldstone AR, et al. EuroSCORE II. Eur J Cardiothorac Surg. 2012;41:734-44.
- Extracorporeal Life Support Organization. Support Documents. Available at: https://www.elso.org/Registry/SupportDocuments.aspx. Accessed November 30, 2018.
- Dyke C, Aronson S, Dietrich W, Hofmann A, Karkouti K, Levi M, et al. Universal definition of perioperative bleeding in adult cardiac surgery. *J Thorac Cardiovasc Surg.* 2014;147:1458-63.
- 25. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, et al. Metaanalysis of observational studies in epidemiology: a proposal for reporting. Metaanalysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA. 2000;283:2008-12.
- Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *PLoS Med.* 2009;6:e1000097.
- National Institute for Health Research. Meta-analysis of the outcome after postcardiotomy venoarterial extracorporeal membrane oxygenation in adult patients. Available at: http://www.crd.york.ac.uk/PROSPERO/display_record.php? ID=CRD42016048140PROSPERO. Accessed December 31, 2018.
- Wells GA, Shea B, O'Connell D, Peterson J, Welch V, Losos M, et al. The Newcastle–Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Ottawa Hospital Research Institute. Available at: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp. Accessed December 31, 2018.
- Harris RP, Helfand M, Woolf SH, Lohr KN, Mulrow CD, Teutsch SM, et al. Current methods of the US Preventive Services Task Force: a review of the process. *Am J Prev Med.* 2001;20(3 suppl):21-35.
- Higgins JPT, Green S, eds. Cochrane Handbook for Systematic Reviews of Interventions. Chichester, UK: John Wiley and Sons; 2008.
- Imai K, Ratkovic M. Covariate balancing propensity score. J R Stat Soc B. 2014; 76:243-63.
- 32. Cole SR, Hernán MA. Constructing inverse probability weights for marginal structural models. *Am J Epidemiol.* 2008;168:656-64.
- **33.** Funk MJ, Westreich D, Wiesen C, Stürmer T, Brookhart MA, Davidian M. Doubly robust estimation of causal effects. *Am J Epidemiol*. 2011;173: 761-7.
- 34. R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2013. Available at: http://www.R-project.org/. Accessed October 1, 2017.

- Greifer N. Cobalt: Covariate balance tables and plots. R package version 3.7.0; 2019. Available at: https://CRAN.R-project.org/package=cobalt. Accessed August 1, 2019.
- Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. A basic introduction to fixed-effect and random-effects models for meta-analysis. *Res Synth Methods*. 2010;1:97-111.
- Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. *Stat* Med. 2002;21:1539-58.
- Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. *BMJ*. 1997;315:629-34.
- van Houwelingen HC, Arends LR, Stijnen T. Advanced methods in meta-analysis: multivariate approach and meta-regression. *Stat Med.* 2002;21:589-624.
- Package "metafor." Available at: https://cran.r-project.org/web/packages/ metafor/metafor.pdf. Accessed December 1, 2015.
- Viechtbauer W. Conducting meta-analyses in R with the metafor package. J Stat Softw. 2010;36:1-48.
- Roubinian N. TACO and TRALI: biology, risk factors, and prevention strategies. *Hematol Am Soc Hematol Educ Program.* 2018;2018:585-94.
- 43. Murphy GJ, Reeves BC, Rogers CA, Rizvi SI, Culliford L, Angelini GD. Increased mortality, postoperative morbidity, and cost after red blood cell transfusion in patients having cardiac surgery. *Circulation*. 2007;116:2544-52.
- 44. Paone G, Likosky DS, Brewer R, Theurer PF, Bell GF, Cogan CM, et al. Transfusion of 1 and 2 units of red blood cells is associated with increased morbidity and mortality. *Ann Thorac Surg.* 2014;97:87-93.
- 45. Cahill CM, Blumberg N, Schmidt AE, Knight PA, Melvin AL, Massey HT, et al. Implementation of a standardized transfusion protocol for cardiac patients treated with venoarterial extracorporeal membrane oxygenation is associated with decreased blood component utilization and may improve clinical outcome. *Anesth Analg.* 2018;126:1262-7.
- 46. Saeed D, Stosik H, Islamovic M, Albert A, Kamiya H, Maxhera B, et al. Femoro-femoral versus atrio-aortic extracorporeal membrane oxygenation: selecting the ideal cannulation technique. *Artif Organs*. 2014;38:549-55.
- 47. Kanji HD, Schulze CJ, Oreopoulos A, Lehr EJ, Wang W, MacArthur RM. Peripheral versus central cannulation for extracorporeal membrane oxygenation: a comparison of limb ischemia and transfusion requirements. *Thorac Cardiovasc Surg.* 2010;58:459-62.

Key Words: extracorporeal membrane oxygenation, ECMO, postcardiotomy, cardiac surgery

APPENDIX E1. SUPPLEMENTAL METHODS

Literature Search Strategy

Our key words and MeSH terms pertinent to the exposure of interest were used in relevant combinations and they are shown to follow.

PubMed

Web site: https://www.ncbi.nlm.nih.gov/pubmed Accessed December 31, 2018 Filters none Fields: Title, Abstract Search terms: "extracorporeal membrane oxygenation" "extracorporeal life support" "ECLS" "ECMO" "cardiac surgery" "postcardiotomy" "cardiogenic shock" "outcomes" "mortality" Number of articles: 4107 (3347 + 760) Search: 3347

("extracorporeal membrane oxygenation" or "extracorporeal life support" or "ECMO" or "ECLS") AND ("cardiac surgery" or "postcardiotomy" or "cardiogenic shock" or "postoperative")

Search; 760

("extracorporeal membrane oxygenation" or "extracorporeal life support" or "ECMO" or "ECLS") AND ("outcomes" or "all-cause mortality") AND ("cardiac surgery" or "postcardiotomy" or "cardiogenic shock" or "postoperative")

EMBASE

Web site: https://hdas.nice.org.uk/

Accessed December, 31 2018

Filters: none

Fields: Title, Abstract

Search terms: "extracorporeal membrane oxygenation" "extracorporeal life support"

"ECLS"

"ECMO"

- "cardiac surgery"
- "postcardiotomy"
- "cardiogenic shock"
- "outcomes"
- "mortality"
- Search: 1117

"((("extracorporeal membrane oxygenation" OR "extracorporeal life support" OR "ECMO" OR "ECLS") AND ("outcomes" OR "all-cause mortality")) AND ("cardiac surgery" OR "postcardiotomy" OR "cardiogenic shock" OR "postoperative")).ti,ab"

Cochrane Library

Web site: https://www.cochranelibrary.com/search

Accessed December, 31 2018 Search option: Search Manager - Trials Field: Title, Abstract Search terms: "extracorporeal membrane oxygenation" "extracorporeal life support" "ECLS" "ECMO" "cardiac surgery" "postcardiotomy" "cardiogenic shock" "outcomes" "mortality" Number of articles: 720(557 + 123 + 40)Search: 557 ("extracorporeal membrane oxygenation" or "extracorporeal life support" or "ECMO" or "ECLS") Search: 123

("extracorporeal membrane oxygenation" or "extracorporeal life support" or "ECMO" or "ECLS") AND ("cardiac surgery" or "postcardiotomy" or "cardiogenic shock" or "postoperative")

Search: 40

("extracorporeal membrane oxygenation" or "extracorporeal life support" or "ECMO" or "ECLS") AND ("outcomes" or "all-cause mortality") AND ("cardiac surgery" or "postcardiotomy" or "cardiogenic shock" or "postoperative")

Citations identified through "first-generation" reference list.

Study (author/year)	Reference no.
Ko et al, 2002^{E1}	18
Rastan et al, 2010 ^{E2}	19
Pokersnik et al, 2012 ^{E3}	25
Unosowa et al, 2012 ^{E4}	18
Mikus et al, 2013 ^{E5}	25
Loforte et al, 2014^{E6}	25
Papadopoulos et al, 2015 ^{E7}	24
Zhao et al, 2015 ^{E8}	31
Khorsandi et al, 2016 ^{E9}	23
Mazzeffi et al, 2016 ^{E10}	21
Biancari et al, 2017 ^{E11}	21
Guihaire et al, 2017 ^{E12}	21
Raffa et al, 2017 ^{E13}	24
Slottosch et al, 2017^{E14}	24
Zhong et al, 2017 ^{E15}	21
Total	340

Outcome Definitions

Neurologic complications were defined according to the Valve Academic Research Consortium 2 (VARC-2)

criteria^{E16}: "as acute episodes of a focal or global neurological deficit with at least 1 of the following: change in the level of consciousness, hemiplegia, hemiparesis, numbness, or sensory loss affecting 1 side of the body, dysphasia or aphasia, hemianopia, amaurosis fugax, or other neurological signs or symptoms consistent with stroke. Stroke: duration of a focal or global neurological deficit \geq 24 hours; OR <24 hours if available neuroimaging documents a new hemorrhage or infarct; OR the neurological deficit results in death. TIA: duration of a focal or global neurological deficit <24 hours, any variable neuroimaging does not demonstrate a new hemorrhage or infarct."

Gastrointestinal complications were defined as any intestinal complication that required surgical intervention.

Peripheral vascular injury was defined as any of the following conditions: aortic rupture, type A aortic dissection, type B aortic dissection, peripheral artery dissection, vascular perforation, arterial thrombosis, and major lower limb amputation.

Renal failure was defined as any use of renal-replacement therapy after surgery. In the present study, we did not consider less severe grades of acute kidney injury because most of patients were expected to experience any significant increase in creatinine level postoperatively.

E-References

- E1. Ko WJ, Lin CY, Chen RJ, Wang SS, Lin FY, Chen YS. Extracorporeal membrane oxygenation support for adult postcardiotomy cardiogenic shock. *Ann Thorac Surg.* 2002;73:538-45.
- E2. Rastan AJ, Dege A, Mohr M, Doll N, Falk V, Walther T, et al. Early and late outcomes of 517 consecutive adult patients treated with extracorporeal membrane oxygenation for refractory postcardiotomy cardiogenic shock. *J Thorac Cardiovasc Surg.* 2010;139:302-11.
- E3. Pokersnik JA, Buda T, Bashour CA, Gonzalez-Stawinski GV. Have changes in ECMO technology impacted outcomes in adult patients developing postcardiotomy cardiogenic shock? J Card Surg. 2012;27:246-52.
- E4. Unosawa S, Sezai A, Hata M, Nakata K, Yoshitake I, Wakui S, et al. Long-term outcomes of patients undergoing extracorporeal membrane oxygenation for refractory postcardiotomy cardiogenic shock. *Surg Today.* 2013;43:264-70.
- E5. Mikus E, Tripodi A, Calvi S, Giglio MD, Cavallucci A, Lamarra M. CentriMag venoarterial extracorporeal membrane oxygenation support as treatment for patients with refractory postcardiotomy cardiogenic shock. ASAIO J. 2013;59: 18-23.
- E6. Loforte A, Marinelli G, Musumeci F, Folesani G, Pilato E, Martin Suarez S, et al. Extracorporeal membrane oxygenation support in refractory cardiogenic shock: treatment strategies and analysis of risk factors. *Artif Organs*. 2014;38: E129-41.
- E7. Papadopoulos N, Marinos S, El-Sayed Ahmad A, Keller H, Meybohm P, Zacharowski K, et al. Risk factors associated with adverse outcome following extracorporeal life support: analysis from 360 consecutive patients. *Perfusion*. 2015;30:284-90.
- E8. Zhao Y, Xing J, Du Z, Liu F, Jia M, Hou X. Extracorporeal cardiopulmonary resuscitation for adult patients who underwent post-cardiac surgery. *Eur J Med Res.* 2015;20:83.
- E9. Khorsandi M, Dougherty S, Sinclair A, Buchan K, MacLennan F, Bouamra O, et al. A 20-year multicentre outcome analysis of salvage mechanical circulatory support for refractory cardiogenic shock after cardiac surgery. *J Cardiothorac Surg.* 2016;11:151.
- E10. Mazzeffi MA, Sanchez PG, Herr D, Krause E, Evans CF, Rector R, et al. Outcomes of extracorporeal cardiopulmonary resuscitation for refractory cardiac arrest in adult cardiac surgery patients. *J Thorac Cardiovasc Surg.* 2016;152: 1133-9.

- **E11.** Biancari F, Dalén M, Perrotti A, Fiore A, Reichart D, Khodabandeh S, et al. Venoarterial extracorporeal membrane oxygenation after coronary artery bypass grafting: results of a multicenter study. *Int J Cardiol*. 2017;241:109-14.
- E12. Guihaire J, Dang Van S, Rouze S, Rosier S, Roisne A, Langanay T, et al. Clinical outcomes in patients after extracorporeal membrane oxygenation support for post-cardiotomy cardiogenic shock: a single-centre experience of 92 cases. *Interact Cardiovasc Thorac Surg.* 2017;25:363-9.
- E13. Raffa GM, Gelsomino S, Sluijpers N, Meani P, Alenizy K, Natour E, et al. Inhospital outcome of post-cardiotomy extracorporeal life support in adult patients: the 2007-2017 Maastricht experience. *Crit Care Resusc.* 2017;19(suppl 1):53-61.
- E14. Slottosch I, Liakopoulos O, Kuhn E, Scherner M, Deppe AC, Sabashnikov A, et al. Lactate and lactate clearance as valuable tool to evaluate ECMO therapy in cardiogenic shock. J Crit Care. 2017;42:35-41.
- E15. Zhong Z, Jiang C, Yang F, Hao X, Xing J, Wang H, et al. Veno-arterial extracorporeal membrane oxygenation support in patients undergoing aortic surgery. *Artif Organs*. 2017;41:1113-20.
- E16. Kappetein AP, Head SJ, Généreux P, Piazza N, van Mieghem NM, Blackstone EH, et al; Valve Academic Research Consortium-2. Updated standardized endpoint definitions for transcatheter aortic valve implantation: the Valve Academic Research Consortium-2 consensus document. *J Thorac Cardiovasc Surg.* 2013;145:6-23.
- E17. Acheampong B, Johnson JN, Stulak JM, Dearani JA, Kushwaha SS, Daly RC, et al. Postcardiotomy ECMO support after high-risk operations in adult congenital heart disease. *Congenit Heart Dis.* 2016;11:751-5.
- E18. Ariyaratnam P, McLean LA, Cale AR, Loubani M. Extra-corporeal membrane oxygenation for the post-cardiotomy patient. *Heart Fail Rev.* 2014;19:717-25.
- E19. Aso S, Matsui H, Fushimi K, Yasunaga H. The effect of intraaortic balloon pumping under venoarterial extracorporeal membrane oxygenation on mortality of cardiogenic patients: an analysis using a nationwide inpatient database. *Crit Care Med.* 2016;44:1974-9.
- E20. Bakhtiary F, Keller H, Dogan S, Dzemali O, Oezaslan F, Meininger D, et al. Venoarterial extracorporeal membrane oxygenation for treatment of cardiogenic shock: clinical experiences in 45 adult patients. *J Thorac Cardiovasc Surg*. 2008;135:382-8.
- E21. Bartko PE, Wiedemann D, Schrutka L, Binder C, Santos-Gallego CG, Zuckermann A, et al. Impact of right ventricular performance in patients undergoing extracorporeal membrane oxygenation following cardiac surgery. J Am Heart Assoc. 2017;6.
- E22. Bata AB, Sawadogo A, D'ostrevy N, Geoffroy E, Dauphin N, Eljezi V, et al. Indications and perioperative outcomes of extracorporeal life support in Clermont-Ferrand. Ann Card Anaesth. 2018;21:181-4.
- E23. Becher PM, Schrage B, Sinning CR, Schmack B, Fluschnik N, Schwarzl M, et al. Venoarterial extracorporeal membrane oxygenation for cardiopulmonary support. *Circulation*. 2018;138:2298-300.
- E24. Beiras-Fernandez A, Deutsch MA, Kainzinger S, Kaczmarek I, Sodian R, Ueberfuhr P, et al. Extracorporeal membrane oxygenation in 108 patients with low cardiac output—a single-center experience. *Int J Artif Organs*. 2011;34:365-73.
- E25. Charlesworth M, Venkateswaran R, Feddy L. When traditional research failsthe case for veno-arterial ECMO in postcardiotomy cardiogenic shock. *Anaesthesia*. 2017;72:1425-6.
- E26. Chen K, Hou J, Tang H, Hu S. Concurrent implantation of intra-aortic balloon pump and extracorporeal membrane oxygenation improved survival of patients with postcardiotomy cardiogenic shock. *Artif Organs*. 2019;43:142-9.
- E27. Chen M, Evans A, Gutsche J. Post-cardiotomy shock extracorporeal membrane oxygenation. J Cardiothorac Vasc Anesth. 2018;32:2094-5.
- E28. Distelmaier K, Niessner A, Haider D, Lang IM, Heinz G, Maurer G, et al. Longterm mortality in patients with chronic obstructive pulmonary disease following extracorporeal membrane oxygenation for cardiac assist after cardiovascular surgery. *Intensive Care Med.* 2013;39:1444-51.
- E29. Distelmaier K, Wiedemann D, Binder C, Haberl T, Zimpfer D, Heinz G, et al. Duration of extracorporeal membrane oxygenation support and survival in cardiovascular surgery patients. *J Thorac Cardiovasc Surg.* 2018; 155:2471-6.
- E30. Doll N, Fabricius A, Borger MA, Bucerius J, Doll S, Krämer K, et al. Temporary extracorporeal membrane oxygenation in patients with refractory postoperative cardiogenic shock–a single center experience. *J Card Surg.* 2003;18: 512-8.
- E31. Doll N, Kiaii B, Borger M, Bucerius J, Krämer K, Schmitt DV, et al. Five-year results of 219 consecutive patients treated with extracorporeal membrane

oxygenation for refractory postoperative cardiogenic shock. *Ann Thorac Surg.* 2004;77:151-7.

- E32. Du Z, Jia Z, Wang J, Xing Z, Jiang C, Xu B, et al. Effect of increasing mean arterial blood pressure on microcirculation in patients with cardiogenic shock supported by extracorporeal membrane oxygenation. *Clin Hemorheol Microcirc*. 2018;70:27-37.
- E33. Ellouze O, Lamirel J, Perrot J, Missaoui A, Daily T, Aho S, et al. Extubation of patients undergoing extracorporeal life support. A retrospective study. *Perfusion*. 2019;34:50-7.
- E34. Elsharkawy HA, Li L, Esa WA, Sessler DI, Bashour CA. Outcome in patients who require venoarterial extracorporeal membrane oxygenation support after cardiac surgery. *J Cardiothorac Vasc Anesth.* 2010;24:946-51.
- E35. Formica F, Avalli L, Martino A, Maggioni E, Muratore M, Ferro O, et al. Extracorporeal membrane oxygenation with a poly-methylpentene oxygenator (Quadrox D). The experience of a single Italian centre in adult patients with refractory cardiogenic shock. ASAIO J. 2008;54:89-94.
- E36. Fukuhara S, Takeda K, Garan AR, Kurlansky P, Hastie J, Naka Y, et al. Contemporary mechanical circulatory support therapy for postcardiotomy shock. *Gen Thorac Cardiovasc Surg.* 2016;64:183-91.
- E37. Fux T, Holm M, Corbascio M, Lund LH, van der Linden J. Venoarterial extracorporeal membrane oxygenation for postcardiotomy shock: risk factors for mortality. *J Thorac Cardiovasc Surg.* 2018;156:1894-902.
- E38. Golding LA, Crouch RD, Stewart RW, Novoa R, Lytle BW, McCarthy PM, et al. Postcardiotomy centrifugal mechanical ventricular support. *Ann Thorac Surg.* 1992;54:1059-63.
- E39. Hsu PS, Chen JL, Hong GJ, Tsai YT, Lin CY, Lee CY, et al. Extracorporeal membrane oxygenation for refractory cardiogenic shock after cardiac surgery: predictors of early mortality and outcome from 51 adult patients. *Eur J Cardiothorac Surg.* 2010;37:328-33.
- E40. Kanji HD, Schulze CJ, Oreopoulos A, Lehr EJ, Wang W, MacArthur RM. Peripheral versus central cannulation for extracorporeal membrane oxygenation: a comparison of limb ischemia and transfusion requirements. *Thorac Cardiovasc Surg.* 2010;58:459-62.
- E41. Khorsandi M, Shaikhrezai K, Prasad S, Pessotto R, Walker W, Berg G, et al. Advanced mechanical circulatory support for post-cardiotomy cardiogenic shock: a 20-year outcome analysis in a non-transplant unit. J Cardiothorac Surg. 2016;11:29.
- E42. Klotz S, Rukosujew A, Welp H, Schmid C, Tjan TD, Scheld HH. Primary extracorporeal membrane oxygenation versus primary ventricular assist device implantation in low cardiac output syndrome following cardiac operation. *Artif* Organs. 2007;31:390-4.
- E43. Lamarche Y, Chow B, Bédard A, Johal N, Kaan A, Humphries KH, et al. Thromboembolic events in patients on extracorporeal membrane oxygenation without anticoagulation. *Innovations (Phila)*. 2010;5:424-9.
- E44. Liden H, Wiklund L, Haraldsson A, Berglin E, Hultman J, Dellgren G. Temporary circulatory support with extra corporeal membrane oxygenation in adults with refractory cardiogenic shock. *Scand Cardiovasc J*. 2009;43:226-32.
- E45. Li CL, Wang H, Jia M, Ma N, Meng X, Hou XT. The early dynamic behaviour of lactate is linked to mortality in postcardiotomy patients with extracorporeal membrane oxygenation support: A retrospective observational study. *J Thorac Cardiovasc Surg.* 2015;149:1445-50.
- E46. Lin CY, Tsai FC, Tian YC, Jenq CC, Chen YC, Fang JT, et al. Evaluation of outcome scoring systems for patients on extracorporeal membrane oxygenation. *Ann Thorac Surg.* 2007;84:1256-62.
- E47. Lorusso R, Barili F, Mauro MD, Gelsomino S, Parise O, Rycus PT, et al. In-hospital neurologic complications in adult patients undergoing venoarterial extracorporeal membrane oxygenation: results from the Extracorporeal Life Support Organization Registry. *Crit Care Med.* 2016;44:e964-72.
- E48. Lorusso R, Gelsomino S, Parise O, Mendiratta P, Prodhan P, Rycus P, et al. Venoarterial extracorporeal membrane oxygenation for refractory cardiogenic shock in elderly patients: trends in application and outcome from the Extracorporeal Life Support Organization (ELSO) Registry. *Ann Thorac Surg.* 2017; 104:62-9.
- E49. Magovern GJ Jr, Magovern JA, Benckart DH, Lazzara RR, Sakert T, Maher TD Jr, et al. Extracorporeal membrane oxygenation: preliminary results in patients with postcardiotomy cardiogenic shock. *Ann Thorac Surg.* 1994;57: 1462-8.
- E50. Maybauer MO, Vohra A, O'Keeffe NJ, Prodromou OE, Maher W, Haravi H, et al. Extracorporeal membrane oxygenation in adult congenital heart disease: a case series and literature review. *Crit Care Resusc.* 2017;19(suppl 1):15-20.

- E51. Mazzeffi M, Greenwood J, Tanaka K, Menaker J, Rector R, Herr D, et al. Bleeding, transfusion, and mortality on extracorporeal life support: ECLS Working Group on Thrombosis and Hemostasis. *Ann Thorac Surg.* 2016;101: 682-9.
- E52. Mohite PN, Sabashnikov A, Koch A, Binu R, Padukone A, Kaul S, et al. Comparison of temporary ventricular assist devices and extracorporeal life support in post-cardiotomy cardiogenic shock. *Interact Cardiovasc Thorac Surg*. 2018; 27:863-9.
- E53. Muehrcke DD, McCarthy PM, Stewart RW, Foster RC, Ogella DA, Borsh JA, et al. Extracorporeal membrane oxygenation for postcardiotomy cardiogenic shock. *Ann Thorac Surg.* 1996;61:684-91.
- E54. Musiał R, Ochońska K, Proc A, Stoliński J, Plicner D, Kapelak B, et al. Venoarterial extracorporeal membrane oxygenation as cardiogenic shock therapy support in adult patients after heart surgery. *Kardiochir Torakochirurgia Pol.* 2017;14:32-6.
- E55. Norkiene I, Jovaisa T, Scupakova N, Janusauskas V, Rucinskas K, Serpytis P, et al. Long-term quality of life in patients treated with extracorporeal membrane oxygenation for postcardiotomy cardiogenic shock. *Perfusion*. 2019;34:285-9.
- E56. Oshima K, Kunimoto F, Hinohara H, Ohkawa M, Mita N, Tajima Y, et al. Extracorporeal membrane oxygenation for respiratory failure: comparison of venovenous versus venoarterial bypass. *Surg Today*. 2010;40:216-22.
- E57. Park SJ, Kim JB, Jung SH, Choo SJ, Chung CH, Lee JW. Outcomes of extracorporeal life support for low cardiac output syndrome after major cardiac surgery. *J Thorac Cardiovasc Surg*, 2014;147:283-9.
- **E58.** Ranney DN, Benrashid E, Meza JM, Keenan JE, Bonadonna DK, Bartz R, et al. Central cannulation as a viable alternative to peripheral Cannulation in extracorporeal membrane oxygenation. *Semin Thorac Cardiovasc Surg.* 2017;29: 188-95.
- E59. Rousse N, Juthier F, Pinçon C, Hysi I, Banfi C, Robin E, et al. ECMO as a bridge to decision: recovery, VAD, or heart transplantation? *Int J Cardiol.* 2015;187: 620-7.
- E60. Russo CF, Cannata A, Lanfranconi M, Bruschi G, Milazzo F, Paino R, et al. Veno-arterial extracorporeal membrane oxygenation using Levitronix centrifugal pump as bridge to decision for refractory cardiogenic shock. *J Thorac Cardiovasc Surg.* 2010;140:1416-21.
- E61. Ruzevich SA, Pennington DG, Kanter KR, Swartz MT, McBride LR, Termuhlen DF. Long-term follow-up of survivors of postcardiotomy circulatory support. *ASAIO Trans.* 1987;33:177-81.
- E62. Ruzevich SA, Kanter KR, Pennington DG, Swartz MT, McBride LR, Termuhlen DF. Long-term follow-up of survivors of postcardiotomy circulatory support. ASAIO Trans. 1988;34:116-24.
- E63. Saeed D, Stosik H, Islamovic M, Albert A, Kamiya H, Maxhera B, et al. Femoro-femoral versus atrio-aortic extracorporeal membrane oxygenation: selecting the ideal cannulation technique. *Artif Organs*. 2014;38:549-55.
- E64. Santarpino G, Ruggieri VG, Mariscalco G, Bounader K, Beghi C, Fischlein T, et al. Outcome in patients having salvage coronary artery bypass grafting. *Am J Cardiol.* 2015;116:1193-8.
- E65. Saxena P, Neal J, Joyce LD, Greason KL, Schaff HV, Guru P, et al. Extracorporeal membrane oxygenation support in postcardiotomy elderly patients: the Mayo Clinic experience. *Ann Thorac Surg.* 2015;99:2053-60.
- E66. Silvetti S, Ranucci M, Pistuddi V, Isgrò G, Ballotta A, Ferraris L, et al. Bloodstream infections during post-cardiotomy extracorporeal membrane oxygenation: Incidence, risk factors, and outcomes. *Int J Artif Organs*. 2019;42: 299-306.
- E67. Slottosch I, Liakopoulos O, Kuhn E, Deppe AC, Scherner M, Madershahian N, et al. Outcomes after peripheral extracorporeal membrane oxygenation therapy for postcardiotomy cardiogenic shock: a single-center experience. *J Surg Res.* 2013;181:e47-55.
- E68. Teman NR, Demos DS, Reames BN, Pagani FD, Haft JW. Outcomes after transfer to a tertiary center for postcardiotomy cardiopulmonary failure. *Ann Thorac Surg.* 2014;98:84-9.
- E69. Wang SS, Chen YS, Ko WJ, Chu SH. Extracorporeal membrane oxygenation support for postcardiotomy cardiogenic shock. *Artif Organs*. 1996;20: 1287-91.
- E70. Wang J, Han J, Jia Y, Zeng W, Shi J, Hou X, et al. Early and intermediate results of rescue extracorporeal membrane oxygenation in adult cardiogenic shock. *Ann Thorac Surg.* 2009;88:1897-903.
- E71. Wang JG, Han J, Jia YX, Zeng W, Hou XT, Meng X. Outcome of veno-arterial extracorporeal membrane oxygenation for patients undergoing valvular surgery. *PLoS One*. 2013;8:e63924.

- ADULT
- E72. Wong JK, Melvin AL, Joshi DJ, Lee CY, Archibald WJ, Angona RE, et al. Cannulation-related complications on veno-arterial extracorporeal membrane oxygenation: prevalence and effect on mortality. *Artif Organs*. 2017;41:827-34.
- E73. Wu MY, Lin PJ, Lee MY, Tsai FC, Chu JJ, Chang YS, et al. Using extracorporeal life support to resuscitate adult postcardiotomy cardiogenic shock: treatment strategies and predictors of short-term and midterm survival. *Resuscitation*. 2010;81:1111-6.
- E74. Xie HX, Yang F, Jiang CJ, Wang JH, Hou DB, Wang JG, et al. Predictors of inhospital mortality in adult postcardiotomy cardiacgenic shock patients successfully weaned from venoarterial extracorporeal membrane oxygenation. *Zhonghua Yi Xue Za Zhi.* 2017;97:929-33.
- E75. Yang F, Hou D, Wang J, Cui Y, Wang X, Xing Z, et al. Vascular complications in adult postcardiotomy cardiogenic shock patients receiving venoarterial extracorporeal membrane oxygenation. *Ann Intensive Care.* 2018;8:72.
- **E76.** Zalawadiya S, Fudim M, Bhat G, Cotts W, Lindenfeld J. Extracorporeal membrane oxygenation support and post-heart transplant outcomes among United States adults. *J Heart Lung Transplant*. 2017;36:77-81.
- E77. Zhang R, Kofidis T, Kamiya H, Shrestha M, Tessmann R, Haverich A, et al. Creatine kinase isoenzyme MB relative index as predictor of mortality on extracorporeal membrane oxygenation support for postcardiotomy cardiogenic shock in adult patients. *Eur J Cardiothorac Surg*, 2006;30:617-20.

- E78. Wells GA, Shea B, O'Connell D, Peterson J, Welch V, Losos M, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Ottawa Hospital Research Institute; Available at: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp. Accessed June 30, 2017.
- E79. Higgins JPT, Green S, eds. Cochrane Handbook for Systematic Reviews of Interventions. Chichester, UK: John Wiley and Sons; 2008.
- E80. Harris RP, Helfand M, Woolf SH, Lohr KN, Mulrow CD, Teutsch SM, et al; Methods Work Group, Third US Preventive Services Task Force. Current methods of the US Preventive Services Task Force: a review of the process. *Am J Prev Med.* 2001;20(3 suppl):21-35.
- E81. Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *PLoS Med.* 2009;6:e1000097.
- E82. von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP; STROBE Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. *Lancet*. 2007;370:1453-7.
- E83. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA. 2000;283:2008-12.

FIGURE E1. Mirror histogram of the propensity score with distribution balance for the entire cohort of patients in the *upper panel*, and mirror histogram of the propensity score with distribution balance without patient crossed from peripheral to central venoarterial extracorporeal membrane oxygenation group during the study period.

Covariate Balance

FIGURE E2. Love plot summarizing covariate balance before and after conditioning for the entire patient cohort. *CPB*, Cardiopulmonary bypass; *Euro-SCORE II*, European System for Cardiac Operative Risk Evaluation II; *VA-ECMO*, venoarterial extracorporeal membrane oxygenation; *IABP*, intra-aortic balloon pump; *eGFR*, estimated glomerular filtration rate; *CAD*, coronary artery disease; *PAP*, pulmonary artery pressure; *ACC*, aortic crossclamp; *LVEF*, left ventricular ejection fraction; *MI*, myocardial infarction; *CABG*, coronary artery bypass grafting; *NYHA*, New York Heart Association; *ARDS*, acute respiratory distress syndrome; *BMI*, body mass index; *PCI*, percutaneous coronary intervention.

FIGURE E3. Love plot summarizing covariate balance before and after conditioning without patient crossed from peripheral to central VA-ECMO group during the study period. *VA-ECMO*, Venoarterial extracorporeal membrane oxygenation; *IABP*, intra-aortic balloon pump; *CPB*, cardiopulmonary bypass; *PAP*, pulmonary artery pressure; *EuroSCORE II*, European System for Cardiac Operative Risk Evaluation II; *LVEF*, left ventricular ejection fraction; *CAD*, coronary artery disease; *NYHA*, New York Heart Association; *MI*, myocardial infarction; *PCI*, percutaneous coronary intervention; *CABG*, coronary artery bypass grafting; *ACC*, aortic crossclamp; *eGFR*, estimated glomerular filtration rate; *BMI*, body mass index.

FIGURE E4. Hospital mortality during the entire study period (χ^2 test for independence: P = .26).

FIGURE E5. PRISMA flow chart of search strategy.^{E81} PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analyses.

FIGURE E6. Funnel plot (*upper panel*) and radial plot (*lower panel*) for in-hospital/30-day mortality showing no heterogeneity among studies and evidence of publication bias (Egger's test, df = 14, P = .916), respectively.

_

Study	Risk Ratio	RR	95%CI
Omitting Ko et al. 2002 ¹		0.92	[0.86; 0.98]
Omitting Rastan et al. 2010 ²		0.88	[0.82; 0.95]
Omitting Pokersnik et al. 2012 ³		0.92	[0.86; 0.98]
Omitting Unosowa et al. 2012 ⁴		0.92	[0.86; 0.99]
Omitting Mikus et al. 2013 ⁵		0.92	[0.86; 0.99]
Omitting Loforte et al. 2014 ⁶		0.92	[0.86; 0.99]
Omitting Papadopoulos et al. 2015 ⁷		0.92	[0.86; 0.99]
Omitting Zhao et al. 2015 ⁸		0.94	[0.88; 0.99]
Omitting Khorsandi et al. 2016 ⁹		0.92	[0.86; 0.98]
Omitting Mazzeffi et al. 2016 ¹⁰		0.92	[0.87; 0.99]
Omitting Biancari et al. 2017 ¹¹		0.92	[0.86; 0.99]
Omitting Guihaire et al. 2017 ¹²		0.92	[0.86; 0.99]
Omitting Raffa et al. 2017 ¹³	i	0.92	[0.86; 0.99]
Omitting Slottosh et al. 2017 ¹⁴		0.92	[0.86; 0.98]
Omitting Zhong et al. 2017 ¹⁵		0.92	[0.87; 0.98]
Omitting PC-ECMO Study 2018	· · · · ·	0.96	[0.90; 1.03]
Random effects model		0.92	[0.87; 0.98]
	0.9 1 1.1		

Study	Risk Ratio	RR	95%CI
Omitting Ko et al. 2002 ¹		0.88	[0.82; 0.94]
Omitting Pokersnik et al. 2012 ³		0.88	[0.82; 0.94]
Omitting Unosowa et al. 2012 ⁴	i	0.89	[0.83; 0.95]
Omitting Mikus et al. 2013 ⁵		0.88	[0.82; 0.95]
Omitting Loforte et al. 2014 ⁶	<u> </u>	0.88	[0.82; 0.95]
Omitting Papadopoulos et al. 2015 ⁷		0.88	[0.82; 0.95]
Omitting Zhao et al. 2015 ⁸		0.90	[0.84; 0.97]
Omitting Khorsandi et al. 2016 ⁹		0.88	[0.82; 0.95]
Omitting Mazzeffi et al. 2016 ¹⁰		0.89	[0.83; 0.95]
Omitting Biancari et al. 2017 ¹¹		0.88	[0.82; 0.94]
Omitting Guihaire et al. 2017 ¹²		0.88	[0.82; 0.95]
Omitting Raffa et al. 2017 ¹³		0.88	[0.82; 0.95]
Omitting Slottosh et al. 2017 ¹⁴		0.87	[0.81; 0.94]
Omitting Zhong et al. 2017 ¹⁵		0.88	[0.82; 0.95]
Omitting PC-ECMO Study 2018		0.91	[0.83; 1.00]
Random effects model		0.88	[0.82; 0.95]
	0.9 1 1.1		

FIGURE E7. Leave-one-out meta-analysis (influence analysis) on in-hospital/30-day mortality (*upper panel*), and leave-one-out meta-analysis for sensitivity analysis on in-hospital/30-day mortality after exclusion of the study of Rastan et al, E^2 (*lower panel*). Pooled estimates are calculated omitting one study at a time.

ort	E
	E
	2
	A

	Periph	eral	Cent	ral				Weight	Weight
Study	Events	Total	Events	Total	Risk Ratio	RR	95%CI	(fixed)	(random)
Ko et al. 2002 ¹	45	61	11	15		1.01	[0.72; 1.41]	3.5%	4.2%
Pokersnik et al. 2012 ³	22	32	11	17		1.06	[0.70; 1.62]	2.8%	2.7%
Unosowa et al. 2012 ⁴	11	32	7	15		0.74	[0.36; 1.52]	1.9%	0.9%
Mikus et al. 2013 ⁵	3	7	4	7		0.75	[0.26; 2.18]	0.8%	0.4%
Loforte et al. 20146	31	62	32	56	<u> </u>	0.88	[0.62; 1.23]	6.6%	4.3%
Papadopoulos et al. 2015 ⁷	225	324	27	36	<u> </u>	0.93	[0.76; 1.13]	9.6%	11.9%
Zhao et al. 2015 ⁸	15	23	1	1	i	0.66	[0.49; 0.88]	0.5%	5.8%
Khorsandi et al. 2016 ⁹	6	9	9	14		1.04	[0.57; 1.90]	1.4%	1.3%
Mazzeffi et al. 2016 ¹⁰	5	9	11	14		0.71	[0.37; 1.35]	1.7%	1.2%
Biancari et al. 2017 ¹¹	56	89	39	59		0.95	[0.75; 1.21]	9.3%	8.3%
Guihaire et al. 2017 ¹²	49	78	9	14		0.98	[0.64; 1.50]	3.0%	2.7%
Raffa et al. 2017 ¹³	35	56	19	27		0.89	[0.65; 1.22]	5.1%	4.8%
Slottosh et al. 201714	52	72	19	28		1.06	[0.79; 1.43]	5.4%	5.7%
Zhong et al. 2017 ¹⁵	16	29	2	7		1.93	[0.57; 6.52]	0.6%	0.3%
PC-ECMO Study 2018	327	536	176	245		0.85	[0.77; 0.94]	47.7%	45.4%
Fixed effects model		1419		555	1	0.90	[0.84; 0.97]	100.0%	
Random effects model					÷	0.88	[0.82; 0.95]		100.0%
Test for overall effect: Fixed Random effects $P = .0005$	effects P	= .005;			0.2 0.5 1 2 5				
Test for heterogeinity: $\tau^2 = 0$); $I^2 = 0\%$;	P = .68		Fa	avours Peripheral Favours Central				

FIGURE E8. Forest plots with unadjusted risk estimates for in-hospital/30-day mortality in patients who underwent peripheral versus central extracorporeal membrane oxygenation. *RR*, Risk ratio; *CI*, confidence interval.

Study	log [Odds Ratio]	SE	Risk Ratio	RR	95%CI	Weight (random)				
Rastan et al. 2010 ⁶	-0.0943	0.2204		0.91	[0.59; 1.40]	34.2%				
Papadopoulos et al. 2015 ¹¹	0.4055	0.3606		1.50	[0.45; 1.85]	12.8%				
PC-ECMO Study 2018	0.4318	0.1768		1.54	[1.09; 2.18]	53.1%				
Random effects model				1.27	[0.88; 1.83]	100.0%				
Test for overall effect: Rando Test for heterogeinity: $\tau^2 = 0$	om effects <i>P</i> = .21 0.05; <i>I</i> ² = 45.69%; <i>P</i> :	= .16	0.2 0.5 1 2 5							
Favours Central Favours Peripheral										

FIGURE E9. Forest plot with adjusted risk estimates for in-hospital/30-day mortality in patients who underwent peripheral versus central extracorporeal membrane oxygenation. *SE*, Standard error. *RR*, risk ratio; *CI*, confidence interval.

STROKE										
Study	Pe Events	riphera Total	al Ce Events	ntral Total	Risk Ratio	RR	95%-CI	Weight (fixed)	Weight (random)	
Ko et al. 2002 ¹	9	61	0	15		4.79	[0.29; 77.86]	1.0%	1.1%	
Mikus et al. 2013 ⁵	0	7	2	7		0.20	[0.01; 3.50]	3.1%	1.0%	
Khorsandi et al. 2016 ⁹	2	9	3	14	<u>+</u>	1.04	[0.21; 5.04]	2.9%	3.3%	
PC-ECMO Study 2018	93	536	55	245		0.77	[0.57; 1.04]	93.0%	94.6%	
Fixed effects model		613		281	4	0.80	[0.60; 1.07]	100.0%		
Random effects mode	el				→	0.79	[0.59; 1.05]		100.0%	
Test for overall effect: F Random effects $P = .1$	Fixed effe	ects P =	= .14;		0.1 0.5 1 2 10					
Test for heterogeinity: $\tau^2 = 0$; $I^2 = 0\%$; $P = .45$ Favours Peript					avours Peripheral Favours Central					

REOPENING FOR BLEEDING/TAMPONADE										
Study	Per Events	ipheral Total	Cen Events	tral Total	Risk Ratio	RR	95%-CI	Weight (fixed)	Weight (random)	
Ko et al. 2002 ¹	25	61	10	15		0.61	[0.39; 0.98]	7.6%	10.1%	
Mikus et al. 2013 ⁵	3	7	6	7		0.50	[0.20; 1.24]	2.9%	2.7%	
PC-ECMO Study 2018	191	536	137	245	+	0.64	[0.54; 0.75]	89.5%	87.2%	
Fixed effects model Random effects mode	el	604		267	÷	0.63 0.63	[0.54; 0.73] [0.54; 0.73]	100.0% 	 100.0%	
Test for overall effect: Random effects $P < .00$	Fixed effe	ects P <	:.0001;	-	0.5 1 2					

Test for heterogeinity: $\tau^2 = 0$; $I^2 = 0$ %; P = .86

Favours	Peripheral	Favours	Central
	i onpriorai		••••••

LOWER LIMB COMPLICATIONS											
Study	Per Events	ipheral Total	Cer Events	ntral Total	Risk Ratio	RR	95%-CI	Weight (fixed)	Weight (random)		
Ko et al. 2002 ¹ Khorsandi et al. 2016 ⁹ PC-ECMO Study 2018	30 5 49	61 9 536	3 3 20	15 14 245		2.46 2.59 1.12	[0.87; 6.98] [0.81; 8.28] [0.68; 1.84]	13.9% 6.8% 79.3%	23.8% 20.2% 56.0%		
Fixed effects model Random effects model Test for overall effect: P Random effects $P = .12$ Test for heterogeinity: $J^2 = 32.7\%$; $P = .23$	Fixed effective $\tau^2 = 0.09^{\circ}$	606 ects <i>P</i> = 77;	:.11;	274 Fa	0.2 0.5 1 2 5 vours Peripheral Favours Central	1.41 1.60	[0.93; 2.13] [0.89; 2.89]	100.0% 	 100.0%		

FIGURE E10. Forest plots with unadjusted risk estimates for stroke (top), reopening for bleeding/tamponade (central), and lower-limb complications (bottom) in patients who underwent peripheral versus central arterial extracorporeal membrane oxygenation cannulation. RR, Risk ratio; CI, confidence interval.

FIGURE E11. Funnel plots showing the absence of publication bias in secondary outcomes, stroke (*top left*), reopening for bleeding/tamponade (*top right*), and leg complications (*bottom*).

FIGURE E12. Meta-regression bubble plots showing the effect of age, sex (proportion of male patients), pulmonary disease, previous cardiac surgery, proportion of patients undergoing CABG, IABP, and delayed VA-ECMO implantation on cannulation site (peripheral versus central VA-ECMO), and in-hospital/30-day mortality. *CABG*, Coronary artery bypass grafting; *IABP*, intra-aortic balloon pump; *VA-ECMO*, venoarterial extracorporeal membrane oxygenation.

TABLE E1. STROBE Statement for observational studies^{E82}

	Item no.	Kecommendation	page no.		
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract(b) Provide in the abstract an informative and balanced summary of what was done and what was found	1 1		
Introduction					
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	1,2		
Objectives	3	State specific objectives, including any prespecified hypotheses	2		
Methods					
Study design	4	Present key elements of study design early in the paper	2		
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	2		
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	2		
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	2		
Data sources/measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	3		
Bias	9	Describe any efforts to address potential sources of bias	3		
Study size	10	Explain how the study size was arrived at	2,3		
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	3		
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	3		
		(b) Describe any methods used to examine subgroups and interactions	3		
		(c) Explain how missing data were addressed	3		
		(d) If applicable, describe analytical methods taking account of sampling strategy (e) Describe any sensitivity analyses	- 3		
Results					
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analyzed	3		
		(b) Give reasons for nonparticipation at each stage (c) Consider use of a flow diagram	6		
Descriptive data	14*	 (a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders 	3		
		(b) Indicate number of participants with missing data for each variable of interest	7		
Outcome data	15*	Report numbers of outcome events or summary measures	3,4		
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	3,4		
		(b) Report category boundaries when continuous variables were categorized	-		
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	-		
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity analyses	4,5, Appendix E1		
Discussion					
Key results	18	Summarize key results with reference to study objectives	5,6		
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	8		
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	6,7,8		
Generalizability	21	Discuss the generalizability (external validity) of the study results	8,9		
Other information					
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	9		

TABLE E2. MOOSE Checklist for Meta-analyses of Observational Studies^{E83}

Item N. Recommendation page P	10.
Reporting of background should include	
1 Problem definition 2	
2 Hypothesis statement 2	
3 Description of study outcome(s) 2.3. Apper	idix E1
4 Type of exposure or intervention used 2.3, Apper	idix E1
5 Type of study designs used 2,3	
6 Study population 2,3	
Reporting of search strategy should include	
7 Qualifications of searchers (eg, librarians and investigators) 3	
8 Search strategy, including time period included in the synthesis and key words 3, Append	lix El
9 Effort to include all available studies, including contact with authors 3, Appendix E1, Ta	bles E5 and E16
10 Databases and registries searched 3, Append	lix E1
11 Search software used, name and version, including special features used (eg, explosion) 3	
12 Use of hand searching (eg, reference lists of obtained articles) Appendi	x El
13 List of citations located and those excluded, including justification Appendix E1, Table	les E5 and E16
14 Method of addressing articles published in languages other than English 3	
15 Method of handling abstracts and unpublished studies Appendi	x EI
16 Description of any contact with authors 3	
Reporting of methods should include	
17 Description of relevance or appropriateness of studies assembled for assessing the 3	
hypothesis to be tested	
18 Rationale for the selection and coding of data (eg, sound clinical principles or 3 convenience)	
10 Documentation of how data were classified and coded (eq. multiple raters, blinding and	
interrater reliability)	
20 Assessment of confounding (eg, comparability of cases and controls in studies where 3	
appropriate)	
21 Assessment of study quality, including blinding of quality assessors, stratification or 3, Table	E19
regression on possible predictors of study results	
22 Assessment of heterogeneity 3	
23 Description of statistical methods (eg, complete description of fixed or random effects 3	
models, justification of whether the chosen models account for predictors of study	
results, dose-response models, or cumulative meta-analysis) in sufficient detail to be	
replicated	
24Provision of appropriate tables and graphics3, Figures 3, E7–E12	, Tables E16–E19
Reporting of results should include	
25 Graphic summarizing individual study estimates and overall estimate Figures E	7–E12
26 Table giving descriptive information for each study included Tables E1	6–E19
27Results of sensitivity testing (eg, subgroup analysis)4,5	
28Indication of statistical uncertainty of findings4,5	
Reporting of discussion should include	
29Quantitative assessment of bias (eg, publication bias)4,5, Figures E	6 and E11
30 Justification for exclusion (eg, exclusion of non–English-language citations) Table	E5
31 Assessment of quality of included studies Table F	E19
Reporting of conclusions should include	
32 Consideration of alternative explanations for observed results 9	
33 Generalization of the conclusions (ie, appropriate for the data presented and within the 8,9	
34 Cuidelines for future research 90	
35 Disclosure of funding source 9	

MOOSE, Meta-Analysis of Observational Studies in Epidemiology.

Section/topic	No.	Checklist item	Reported on page no.
Title Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
Abstract Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	1
Introduction Rationale	3	Describe the rationale for the review in the context of what is already	1,2
Objectives	4	known. Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	Table E4
Methods			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (eg, Web address), and, if available, provide registration information including registration number.	3
Eligibility criteria	6	Specify study characteristics (eg, PICOS, length of follow-up) and report characteristics (eg, y considered, language, publication status) used as criteria for eligibility, giving rationale.	2,3, Table E4
Information sources	7	Describe all information sources (eg, databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	3, Appenedix E1
Search	8	Present full electronic search strategy for at least one database, including any limits used such that it could be repeated	Appendix E1
Study selection	9	State the process for selecting studies (ie, screening, eligibility, included in systematic review, and, if applicable, included in the meta- analysis).	4,5, Appendix E1
Data collection process	10	Describe method of data extraction from reports (eg, piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	3,4,5
Data items	11	List and define all variables for which data were sought (eg, PICOS, funding sources) and any assumptions and simplifications made.	Appendix E1
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	3
Summary measures	13	State the principal summary measures (eg, risk ratio, difference in means).	3
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (eg, I^2) for each meta- analysis.	3
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (eg, publication bias, selective reporting within studies).	3
Additional analyses	16	Describe methods of additional analyses (eg, sensitivity or subgroup analyses, meta-regression), if done, indicating which were prespecified.	3

TABLE E3. PRISMA checklist of items to include when reporting a systematic review or meta-analysis^{E81}

TABLE E3. Continued

	N		Reported on
Section/topic	NO.	Checklist item	page no.
Results			
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included	4
		in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	
Study characteristics	18	For each study, present characteristics for which data were extracted and provide the citations.	Tables E16–E18
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	Table E19
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	4,5
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	Figure 3, E7–E12, Tables E16–E18
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see item 15).	4,5
Additional analysis	23	Give results of additional analyses, if done (eg, sensitivity or subgroup analyses, meta-regression [see item 16]).	4,5
Discussion			
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (eg, health care providers, users, and policy makers).	9
Limitations	25	Discuss limitations at study and outcome level (eg, risk of bias), and at review-level (eg, incomplete retrieval of identified research, reporting bias).	8
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	8,9
Funding			
Funding	27	Describe sources of funding for the systematic review and other support (eg, supply of data); role of funders for the systematic review.	9

PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analyses.

TABLE E4. PICOS criteria for inclusion and exclusion of studies into meta-analysis

Parameter	Inclusion criteria	Exclusion criteria
Patients	Adult patients (≥18 y)	_
Intervention	VA-ECMO for postcardiotomy syndrome	VA-ECMO before index cardiac surgery VA-ECMO after HTx/VAD VV-ECMO
Comparator	VA-ECMO cannulation site	No comparison between peripheral versus central VA- ECMO
Outcomes	Primary: in-hospital/30-d mortality Secondary (postoperative): re-exploration for bleeding/ tamponade; CVA; RRT/dialysis; GI complications; limb ischemia; sepsis; successful ECMO weaning	-
Study design	Clinical randomized trials Controlled before-and-after studies Prospective and retrospective cohort studies Cross-sectional studies Case–control studies	Repeat publications of the same analysis or dataset Conference abstracts Editorials and opinion pieces Books or gray literature

VA-ECMO, Venoarterial extracorporeal membrane oxygenation; HTx, heart transplant; VAD, ventricular assist device; VV-ECMO, venovenous extracorporeal membrane oxygenation; CVA, cerebrovascular accident; RRT, renal-replacement therapy; GI, gastrointestinal.

			<u></u>	, , , , , , , , , , , , , , , , , , , ,	Reason for exclusion			
				Number of	Etiology for	No data	Review/	
Study (author, y)	Design	Country	Study period	patients	ECMO	on cannulation	editorial	Other
Acheampong et al, 2016 ^{E17}	Retr. Monoc.	US	2001-2013	24		Х		
Ariyaratnam et al, 2014 ^{E18}	Retr. Monoc.	UK	-	14		Х	Х	
Aso et al, 2016 ^{E19}	Retr. Monoc.	Japan	2010-2013	1650	Cardiogenic shock	Х		
Bakhtiary et al, 2007 ^{E20}	Retr. Monoc.	Germany	2003-2006	20	Cardiogenic shock			
Bartko et al, 2017 ^{E21}	Retr. Monoc.	Austria	2003-2014	240		Х		
Bata et al, 2018 ^{E22}	Retr. Monoc.	France	2005-2014	46		Х		
Becher et al, 2018 ^{E23}	Retr. Multic.	Germany	2007-2015	8351	Mixed $(PCS = 0\%)$	Х		No PCS data
Beiras-Fernandez et al, 2011 ^{E24}	Retr. Monoc.	Germany	1996-2006	108		Х		Pediatric Pts
Charlesworth et al, 2017 ^{E25}	(Review)	UK	-	-			Х	
Chen et al, 2018 ^{E26}	Retr. Monoc.	China	2006-2017	60		Х		
Chen et al, 2018 ^{E27}	(Editorial)	US	-	-			Х	
Distelmaier et al, 2013 ^{E28}	Retr. Monoc.	Austria	2002-2009	191		Х		
Distelmaier et al, 2018 ^{E29}	Retr. Monoc.	Austria	2003-2014	354		Х		
Doll et al, 2003^{E30}	Retr. Monoc.	Germany	1997-2000	95		Х		
Doll et al, 2004 ^{E31}	Retr. Monoc.	Germany	1997-2002	219		Х		
Du et al, 2018 ^{E32}	Prosp. Monoc.	China	-	17		Х		
Ellouze et al, 2018 ^{E33}	Retr. Monoc.	France	2014-2016	57	Mixed $(PCS = 33\%)$	Х		
Elsharkawy et al, 2010 ^{E34}	Prosp. Monoc.	US	1995-2005	233		Х		
Formica et al, 2008 ^{E35}	Retr. Monoc.	Italy	2000-2007	25	Mixed $(PCS = 50\%)$	Х		
Fukuhara et al, 2016 ^{E36}	(Review)	US	-	-			Х	
Fux et al, 2018 ^{E37}	Retr. Monoc.	Sweden	2006-2015	105				90d-mortality
Golding et al, 1992 ^{E38}	Retr. Monoc.	US	1979-1991	79		Х		VAD
Hsu et al, 2010 ^{E39}	Retr. Monoc.	Taiwan	2002-2006	51		Х		
Kanji et al, 2010 ^{E40}	Retr. Monoc.	Canada	2002-2006	50	Mixed $(PCS = 74\%)$			
Khorsandi et al, 2016 ^{E41}	Retr. Monoc.	UK	1995-2015	16				Duplicatio
Klotz et al, 2007 ^{E42}	Retr. Monoc.	Germany	1995-2006	183		X		VAD

TABLE E5. List of studies excluded with reasons from the final systematic review and meta-analysis

TABLE E5. Continued

					Reason for exclusion			
		_		Number of	Etiology for	No data	Review/	
Study (author, y)	Design	Country	Study period	patients	ЕСМО	on cannulation	editorial	Other
Lamarche et al, 2010 ^{E43}	Retr. Monoc.	Canada	2000-2008	20	Mixed $(PCS = 75\%)$	Х		
Liden et al, 2009 ^{E44}	Retr. Monoc.	Sweden	2000-2007	52	Mixed (PCS = 63%)	Х		
Li et al, 2015 ^{E45}	Retr. Monoc.	China	2011-2012	123		Х		
Lin et al, 2017 ^{E46}	Retr. Monoc.	Taiwan	2008-2015	162		Х		
Lorusso et al, 2016 ^{E47}	Prosp. Multic.	ELSO Registry	1992-2013	4522	Mixed $(PCS = 19\%)$	Х		
Lorusso et al, 2017 ^{E48}	Prosp. Multic.	ELSO Registry	1992-2015	5408	Mixed (PCS = 1.4%)	Х		
Magovern et al, 1994 ^{E49}	Retr. Monoc.	US	1991-1993	21		Х		
Maybauer et al, 2017 ^{E50}	Retr. Monoc.	UK	2011-2016	4				Case series/VAD
Mazzeffi et al, 2016 ^{E51}	Retr. Monoc.	US	2010-2013	132	Mixed $(PCS = 29\%)$	Х		
Mohite et al, 2018 ^{E52}	Retr. Monoc.	UK	2005-2014	56		Х		VAD
Muehrcke et al, 1996 ^{E53}	Retr. Monoc.	US	1992-1994	23		Х		No data on mortality
Musial et al, 2017 ^{E54}	Retr. Monoc.	Poland	2009-2016	27		Х		
Norkiene et al, 2018 ^{E55}	Retr. Monoc.	Lithuania	2009-2014	15		Х		
Oshima et al, 2007 ^{E56}	Retr. Monoc.	Japan	1991-2006	13		Х		
Park et al, 2014 ^{E57}	Retr. Monoc.	Korea	2005-2011	93		Х		
Ranney et al, 2017 ^{E58}	Retr. Monoc.	US	2009-2015	131	Mixed (PCS = 67%)	Х		
Rousse et al, 2015 ^{E59}	Retr. Monoc.	France	2006-2011	98	Mixed (PCS = 30%)	Х		
Russo et al, 2010 ^{E60}	Retr. Monoc.	Italy	2005-2009	15	Mixed (PCS = 20%)			VAD
Ruzevich et al, 1987 ^{E61}	Retr. Monoc.	US	1980-1987	22		Х		VAD/Pediatric Pts
Ruzevich et al, 1988 ^{E62}	Retr. Monoc.	US	1980-1987	22		Х		VAD/Pediatric Pts
Saeed et al, 2014 ^{E63}	Retr. Monoc.	Germany	2009-2011	37	Mixed $(PCS = 87\%)$			
Santarpino et al, 2015 ^{E64}	Retr. Multic.	Europe	2005-2015	85		Х		Preop ECMO
Saxena et al, 2015 ^{E65}	Retr. Monoc.	Italy	2013-2017	92		Х		
Silvetti et al, 2018 ^{E66}	Retr. Monoc.	Australia	2003-2013	45		Х		
Slottosch et al, 2013 ^{E67}	Retr. Monoc.	Germany	2006-2010	77		Х		

TABLE E5. Collu	nuea								
					Reason for exclusion				
Study (author, y)	Design	Country	Study period	Number of patients	Etiology for ECMO	No data on cannulation	Review/ editorial	Other	
Teman et al, 2014 ^{E68}	Retr. Monoc.	US	2004-2012	104		Х		VAD	
Wang et al, 1996 ^{E69}	Retr. Monoc.	Taiwan	1994-1995	18		Х			
Wang et al, 2009 ^{E70}	Retr. Monoc.	China	2004-2008	62		Х			
Wang et al, 2013 ^{E71}	Retr. Monoc.	China	2004-2011	87		Х			
Wong et al, 2017 ^{E72}	Retr. Monoc.	US	2010-2015	103		Х		VV-ECMO/VAD- ECMO	
Wu et al, 2010 ^{E73}	Retr. Monoc.	Taiwan	2003-2009	110		Х			
Xie et al, 2017 ^{E74}	Retr. Monoc.	China	2011-2015	177		Х			
Yang et al, 2018 ^{E75}	Retr. Monoc.	China	2004-2015	432		Х			
Zalawadiya et al, 2016 ^{E76}	Prosp. Multic.	UNOS registry	2000-2015	157	Postheart transplant	Х			
Zhang et al, 2006 ^{E77}	Retr. Monoc.	Germany	1996-2004	32		Х			

TABLE E5. Continued

ECMO, Extracorporeal membrane oxygenation; Retr., retrospective; Monoc., mono-center; Multic., multicenter; PCS, postcardtomy shock; Prosp., prospective; ELSO, Extracorporeal Life Support Organization; VAD, ventricular assist device; VV-ECMO, venovenous extracorporeal membrane oxygenation; UNOS, United Network for Organ Sharing.

TABLE E6. Baseline characteristics and operative data in the overall series

		Overall series	
Variables*	Peripheral VA-ECMO, n = 536 patients	Central VA-ECMO, n = 245 patients	P value
Demographics			
Age, y	63.9 (12.3)	61.5 (14.1)	.02
Female	172 (32.1)	77 (31.4)	.92
BMI, kg/m ²	26.7 [23.9-30.0]	26.5 [23.3-29.8]	.53
BMI $> 30 \text{ kg/m}^2$	136 (25.4)	61 (24.9)	.96
Cardiac status			
Elective procedure	223 (41.6)	104 (42.4)	.89
Urgent/emergent procedure	288 (53.7)	127 (51.8)	.69
Salvage procedure	25 (4.7)	14 (5.7)	.65
Critical preoperative state	197 (36.8)	79 (32.2)	.25
Preoperative IABP	41 (7.6)	21 (8.6)	.76
Previous cardiac surgery	123 (22.9)	63 (25.7)	.45
CCS angina class IV	99 (18.5)	54 (22.0)	.29
NYHA class I-II	182 (34.0)	93 (38.0)	.31
NYHA class III-IV	354 (66.0)	152 (62.0)	.31
Previous MI	181 (33.8)	96 (39.2)	.17
Previous PCI	105 (19.6)	41 (16.7)	.39
Recent myocardial infarction	128 (23.9)	71 (29.0)	.15
LVEF >50%	228 (42.5)	90 (36.7)	.15
LVEF 30%-50%	178 (33.2)	82 (33.5)	1.00
LVEF 21%-30%	89 (16.6)	47 (19.2)	.44
LVEF <21%	41 (7.6)	26 (10.6)	.22
Active endocarditis	53 (9.9)	32 (13.1)	.23
PAPs >55 mm Hg	94 (17.5)	46 (18.8)	.75
Comorbidities			
Diabetes	131 (24.4)	69 (28.2)	.31
Diabetes type		· · ·	.49
No diabetes	405 (75.6)	176 (71.8)	
IDDM	68 (12.7)	38 (15.5)	
NIDDM	63 (11.8)	31 (12.7)	
Hemoglobin, g/L	125.6 (21.5)	124.6 (22.7)	.54
eGFR, mL/min/1.73 m ²	66.5 [49.1-85.3]	65.0 [45.1-82.8]	.31
Dialysis	25 (4.7)	7 (2.9)	.32
Stroke	39 (7.3)	21 (8.6)	.63
Extracardiac arteriopathy	77 (14.4)	43 (17.6)	.29
Pulmonary disease	73 (13.6)	37 (15.1)	.66
Atrial fibrillation	143 (26.7)	49 (20.0)	.06
Poor mobility	29 (5.4)	15 (6.1)	.82
EuroSCORE II, score	0.09 [0.04-0.19]	0.09 [0.03-0.27]	.42
Indications for cardiac surgery			
CAD	233 (43.5)	122 (49.8)	.12
Aortic valve stenosis	93 (17.4)	50 (20.4)	.36
Aortic valve regurgitation	94 (17.5)	33 (13.5)	.19
Mitral valve stenosis	31 (5.8)	11 (4.5)	.57
Mitral valve regurgitation	165 (30.8)	70 (28.6)	.59
Tricuspid valve regurgitation	81 (15.1)	23 (9.4)	.05
Ascending aortic aneurysm	43 (8.0)	15 (6.1)	.43
Aortic arch aneurysm	9 (1.7)	5 (2.0)	.95
Type A aortic dissection	43 (8.0)	19 (7.8)	1.00
Pulmonary thromboembolism	10 (1.9)	1 (0.4)	.20

TABLE E6. Continued

		Overall series	
Variables*	Peripheral VA-ECMO, n = 536 patients	Central VA-ECMO, n = 245 patients	P value
Cardiac procedures			
CABG	257 (47.9)	133 (54.3)	.12
Off-pump CABG	8 (1.5)	3 (1.2)	1.00
On-pump CABG	242 (45.1)	125 (51.0)	.15
Beating-heart CABG on CPB	7 (1.3)	6 (2.4)	.39
SIMA	162 (30.2)	78 (31.8)	.71
BIMA	62 (11.6)	15 (6.1)	.025
Incomplete revascularization	59 (11.0)	33 (13.5)	.38
AVR	144 (26.9)	69 (28.2)	.77
Aortic valve repair	6 (1.1)	1 (0.4)	.57
MVR	129 (24.1)	48 (19.6)	.19
Mitral valve repair	66 (12.3)	30 (12.2)	1.00
TVR	15 (2.8)	7 (2.9)	1.00
Tricuspid valve repair	60 (11.2)	18 (7.3)	.13
Bentall-De Bono procedure	53 (9.9)	22 (9.0)	.79
Aortic valve sparing	4 (0.7)	6 (2.4)	.11
Ascending aortic replacement	35 (6.5)	19 (7.8)	.64
Aortic arch replacement	28 (5.2)	11 (4.5)	.79
PTE	10 (1.9)	0 (0.0)	.07
Other major cardiac surgery	8 (1.5)	10 (4.1)	.05
Intraoperative data			
ACC time, min	113.0 [75.0-158.0]	109.0 [68.0-161.0]	.58
CPB time, min	200.0 [123.0-280.50]	220.0 [150.0-308.0]	.01

VA-ECMO, Venoarterial extracorporeal membrane oxygenation; *BMI*, body mass index; *IABP*, intra-aortic balloon pump; *CCS*, Canadian Cardiovascular Society (class); *NYHA*, New York Heart Association (class); *MI*, myocardial infarction; *PCI*, percutaneous coronary intervention; *LVEF*, left ventricular ejection fraction; *PAP*, pulmonary artery pressure; *IDDM*, insulin-dependent diabetes mellitus; *NIDDM*, non-insulin-dependent diabetes mellitus; *eGFR*, estimated glomerular filtration rate; *EuroSCORE II*, European System for Cardiac Operative Risk Evaluation II; *CAD*, coronary artery disease; *CABG*, coronary artery bypass grafting; *CPB*, cardiopulmonary bypass; *SIMA*, single internal mammary artery (use); *BIMA*, bilateral internal mammary artery (use); *AVR*, aortic valve replacement; *MVR*, mitral valve replacement; *TVR*, tricuspid valve replacement; *ables* as number (percent).

TABLE E7. VA-ECMO-related characteristics and indications for insertion

	Overal	l series		
	Peripheral	Central VA-ECMO,		
Variables*	VA-ECMO, n = 536 patients	n = 245 patients	P value	
Indications for VA-ECMO				
Failure to wean from CPB	184 (34.3)	115 (46.9)	.001	
Heart failure after weaning from CPB	274 (51.1)	100 (40.8)	.009	
Ventricular arrhythmias after CPB weaning	42 (7.8)	20 (8.2)	.99	
Cardiac arrest after weaning from CPB	42 (7.8)	22 (9.0)	.69	
Respiratory failure after weaning from CPB	42 (7.8)	13 (5.3)	.26	
ARDS after weaning from CPB	22 (4.1)	1 (0.4)	.009	
Septic shock after weaning from CPB	14 (2.6)	1 (0.4)	.07	
Pulmonary embolism	1 (0.2)	4 (1.6)	.06	
Timing of ECMO insertion				
VA-ECMO inserted immediately after surgery			<.001	
No	230 (42.9)	76 (31.0)		
After weaning attempts with inotropes only	248 (46.3)	107 (43.7)		
After weaning attempts with IABP	57 (10.6)	62 (25.3)		
After weaning attempts with Impella	1 (0.2)	0 (0.0)		
VA-ECMO inserted later after surgery			.002	
No	306 (57.1)	169 (69.0)		
After weaning attempts with inotropes only	182 (34.0)	51 (20.8)		
After weaning attempts with IABP	47 (8.8)	25 (10.2)		
After weaning attempts with Impella	1 (0.2)	0		
Timing between heart failure after CPB and ECMO	1 (0.79-1.01)	0.78 (0.46-1.10)	<.001	
Cannulation ECMO data				
Primary arterial cannulation for VA-ECMO			<.001	
Ascending aorta	-	245 (100)		
Femoral artery	467 (87.1)	0 (0.0)		
Another artery	69 (12.9)	0 (0.0)		
Primary venous cannulation for VA-ECMO	523 (97.6)	84 (34.3)	<.001	
Conversion from mini- to full sternotomy	8 (1.5)	2 (0.8)	.66	
Switch from central to peripheral cannulation	0	23 (9.4)	<.001	
IABP			<.001	
No	372 (69.4)	131 (53.5)		
IABP immediately after surgery with ECMO	41 (7.6)	37 (15.1)		
IABP immediately after surgery without ECMO	46 (8.6)	27 (11.0)		
IABP inserted later after surgery with ECMO	21 (3.9)	18 (7.3)		
IABP inserted later after surgery without ECMO	15 (2.8)	11 (4.5)		
IABP preoperatively inserted	41 (7.6)	21 (8.6)		
Impella, n (%)			.32	
No	531 (99.1)	245 (100)		
Impella immediately after surgery with ECMO	3 (0.6)	0 (0.0)		
Impella inserted later after surgery with ECMO	2 (0.4)	0 (0.0)		
Left ventricular venting, n (%)			<.001	
No	517 (96.5)	201 (82.0)		
Right superior pulmonary vein	13 (2.4)	37 (15.1)		
Left ventricular apex	5 (0.9)	3 (1.2)		
Another site	1 (0.2)	4 (1.6)		
Lower-leg perfusion during peripheral VA-ECMO from the arterial cannula site‡	396 (73.9)	12 (4.9)	<.001	
Other data				
Duration of ECMO support, d	6.0 [4.0-11.0]	6.0 [3.0-9.0]	.39	
Arterial pH before VA-ECMO	7.30 (0.14)	7.30 (0.13)	.73	
Arterial lactate before VA-ECMO	6.0 [3.4-9.9]	5.6 [3.1-8.9]	.34	
Target ACT during VA-ECMO, s	200 [180-220]	180 [150-200]	<.001	

VA-ECMO, Venoarterial extracorporeal membrane oxygenation; *CPB*, cardiopulmonary bypass; *ARDS*, acute respiratory distress syndrome; *IABP*, intra-aortic balloon pump; *ACT*, activated clotting time. *Continuous data are presented as mean (standard deviation) or median [interquartile range]; categorical variables as number (percent). †Data expressed in days (mean and interquartile range). ‡In the central group, this refers to patients switched to peripheral cannulation.

TABLE E8. Primary and secondary outcomes after VA-ECMO implantation and the doubly robust matching estimators for confounding adjustment

	0	verall series	Doubly robust adjustment				
	Peripheral	Central			oust uujusti	incircit,†	
Variables*	n = 536 patients	vA-ECMO, n = 245 patients	P value	Odds ratio	95% CI	P value	
Primary end point					<u> </u>	_	
In-hospital mortality	327 (61.0)	176 (71.8)	.004	1.54	1.09-2.18	.02	
Secondary end points							
Reoperation for bleeding/tamponade	191 (35.6)	137 (55.9)	<.001	1.96	1.37-2.81	<.001	
Reoperation for bleeding at cannulation site	43 (8.0)	23 (9.4)	.62	0.81	0.42-1.57	.53	
Tracheostomy	132 (24.6)	48 (19.6)	.15	0.76	0.49-1.17	.21	
Stroke	93 (17.4)	55 (22.4)	.11	1.11	0.72-1.71	.65	
Dialysis		~ /	.29	0.84	0.60-1.19	.34	
No	250 (46.6)	122 (49.8)					
Transient	231 (43.1)	92 (37.6)					
Permanent	55 (10.3)	31 (12.7)					
Pancreatitis	8 (1.5)	4 (1.6)	1.00	1.45	0.36-5.85	.60	
Liver failure	205 (38.2)	60 (24.5)	<.001	0.63	0.43-0.92	.02	
Gastrointestinal complications requiring surgical treatment	32 (6.0)	15 (6.1)	1.00	0.93	0.45-1.92	.84	
Multiorgan failure	279 (52.1)	111 (45.3)	.09	0.85	0.60-1.21	.37	
DSWI	19 (3.5)	10 (4.1)	.87	1.00	0.41-2.43	.99	
Vascular access-site infection	60 (11.2)	7 (2.9)	<.001	0.25	0.11-0.59	.002	
Pneumonia	208 (38.8)	77 (31.4)	.06	0.88	0.61-1.28	.50	
Sepsis	140 (26.1)	39 (15.9)	.002	0.64	0.42-0.99	.05	
Other severe infections	55 (10.3)	13 (5.3)	.03	0.57	0.35-1.34	.27	
Peripheral vascular complications	49 (9.1)	20 (8.2)	.76	0.80	0.43-1.48	.47	
Aortic rupture	0 (0.0)	2 (0.8)					
Type A aortic dissection	6 (1.1)	2 (0.8)					
Type B aortic dissection	1 (0.2)	2 (0.8)					
Peripheral artery dissection	8 (1.5)	1 (0.4)					
Vascular perforation	3 (0.6)	4 (1.6)					
Thrombosis	32 (6.0)	11 (4.5)					
Stenosis	2 (0.4)	1 (0.4)					
Pseudoaneurysm	1 (0.2)	1 (0.4)					
Major lower-limb amputation			.37		NA		
No	530 (98.9)	239 (97.6)					
Femoral cannulation side	5 (0.9)	5 (2.0)					
Other side	1 (0.2)	1 (0.4)					
Atrial fibrillation			.13	1.26	0.89-1.78	.20	
No	294 (54.9)	128 (52.2)					
Paroxysmal	174 (32.5)	95 (38.8)					
Permanent	68 (12.7)	22 (9.0)					
RBC units transfused, U	15.0 [7.0-28.0]	21.0 [12.0-38.0]	<.001	5.56§	2.07§	.007§	
More than 9 RBC units transfused	344 (64.2)	203 (82.9)	<.001	2.42	1.59-3.67	<.001	
Chest drains output 24 h after surgery, mL	780 [500-1450]	1389 [750-2500]	<.001	622.52§	132.76§	<.001§	
ICU stay, d	12.0 [5.0-24.0]	11.0 [5.0-21.0]	.31	-1.26§	1.57§	.42§	
Hospital stay, d	17.0 [5.8-35.0]	13.0 [5.0-27.0]	.04	-5.79§	2.49§	.02§	
More than 10 d on VA-ECMO	128 (23.9)	57 (23.3)	.92	0.83	0.55-1.27	.40	
Successful weaning from VA-ECMO	271 (50.6)	108 (44.1)	.11	0.74	0.53-1.06	.10	
Postoperative VAD or heart transplant	17 (3.2)	12 (4.9)	.33	1.79	0.82-3.93	.14	
VAD from VA-ECMO	12 (2.2)	10 (4.1)	.23	2.23	0.92-5.42	.08	

TABLE E8. Continued

	0	verall series	Doubly robust adjustment [†] , [‡]			
	Peripheral	Central				
	VA-ECMO,	VA-ECMO,				
Variables*	n = 536 patients	n = 245 patients	P value	Odds ratio	95% CI	P value
Heart transplant			.80		NA	
No	527 (98.3)	240 (98.0)				
From VA-ECMO	5 (0.9)	2 (0.8)				
From LVAD	4 (0.7)	3 (1.2)				
Any new cardiac procedure [‡]	46 (8.6)	26 (0.6)	.44	1.21	0.67-2.19	.52
New cardiac surgery procedure during ECMO [‡]	44 (8.2)	23 (9.4)	.63	1.16	0.64-2.13	.62
Oxygenator failure for clots	58 (10.8)	11 (4.5)	.006	0.48	0.24-0.96	.04
Nadir arterial pH during VA-ECMO	7.22 (0.13)	7.24 (0.15)	.07	0.01§	0.01§	.39 <mark>§</mark>
Peak arterial lactate during VA-ECMO, mmol/L	7.5 [4.6-12.0]	7.6 [4.1-13.0]	.99	0.14§	0.55§	.80§
Nadir postoperative hemoglobin, g/L	74.30 (10.91)	75.35 (12.64)	.24	0.26§	1.03§	.80§

VA-ECMO, Venoarterial extracorporeal membrane oxygenation; *CI*, confidence interval; *DSWI*, deep sternal wound infection; *NA*, not applicable; *RBC*, red blood cell; *CPB*, cardiopulmonary bypass; *ICU*, intensive cardia unit; *VAD*, ventricular assist device; *LVAD*, left ventricular assist device. *Continuous data are presented as mean (standard deviation) or median [interquartile range]; categorical variables as number (percent). †Reference for the events: central VA-ECMO group. ‡This include percutaneous balloon angioplasty (cardiac procedure) and bypass surgery, aortic valve replacement or aortic repair (new cardiac surgery). §Linear regression expressed as standard regression coefficient, standard error and *P* value.

	Unadjusted sample							Adjusted sample							
	Peripl VA-EC n = 1 patie	heral CMO, 536 ents	Cen VA-E(n = patio	tral CMO, 245 ents	T	Balance neasures		Perip VA-E(n = 26 patie	heral CMO, 53,224 ents	Cen VA-E(n = patie	tral CMO, 245 ents		Balance me	asures	
Variable	Mean	SD	Mean	SD	Mean difference	Variance ratio	KS	Mean	SD	Mean	SD	Mean difference	Mean difference threshold	Variance ratio	KS
Age	63.846	12.323	61.514	14.059	-0.166	1.302	0.114	62.253	14.042	61.514	14.059	-0.053	< 0.1	1.003	0.105
Female	0.321	0.467	0.314	0.465	-0.014			0.313	0.465	0.314	0.465	0.002	< 0.1		
BMI	27.263	5.025	27.085	5.337	-0.033	1.128	0.066	27.060	4.864	27.085	5.337	0.005	< 0.1	1.204	0.068
Hemoglobin	125.591	21.485	124.567	22.739	-0.045	1.120	0.033	125.202	21.257	124.567	22.739	-0.028	< 0.1	1.144	0.050
eGFR	68.561	30.992	66.694	28.651	-0.065	0.855	0.061	66.995	30.709	66.694	28.651	-0.011	< 0.1	0.870	0.069
Dialysis	0.047	0.211	0.029	0.167	-0.108			0.030	0.172	0.029	0.167	-0.010	< 0.1		
Diabetes	0.244	0.430	0.282	0.451	0.083			0.275	0.447	0.282	0.451	0.015	< 0.1		
Poor mobility	0.054	0.226	0.061	0.240	0.030			0.064	0.245	0.061	0.240	-0.010	< 0.1		
Stroke	0.073	0.260	0.086	0.281	0.046			0.088	0.284	0.086	0.281	-0.009	< 0.1		
Atrial fibrillation	0.267	0.443	0.200	0.401	-0.167			0.209	0.407	0.200	0.401	-0.022	< 0.1		
ARDS after weaning from CPB	0.041	0.199	0.004	0.064	-0.579			0.005	0.071	0.004	0.064	-0.016	< 0.1		
Extracardiac arteriopathy	0.144	0.351	0.176	0.381	0.084			0.175	0.381	0.176	0.381	0.001	< 0.1		
Pulmonary disease	0.136	0.343	0.151	0.359	0.041			0.152	0.359	0.151	0.359	-0.002	< 0.1		
Previous cardiac surgery	0.230	0.421	0.257	0.438	0.063			0.256	0.437	0.257	0.438	0.004	<0.1		
Previous MI	0.338	0.473	0.392	0.489	0.111			0.381	0.487	0.392	0.489	0.021	< 0.1		
NYHA class I-II	0.340	0.474	0.380	0.486	0.082			0.373	0.485	0.380	0.486	0.014	< 0.1		
LVEF >50%	0.425	0.495	0.367	0.483	-0.120			0.374	0.485	0.367	0.483	-0.013	< 0.1		
LVEF 30%-50%	0.332	0.471	0.335	0.473	0.006			0.337	0.474	0.335	0.473	-0.004	< 0.1		
LVEF 21%-30%	0.166	0.373	0.192	0.395	0.065			0.186	0.389	0.192	0.395	0.016	< 0.1		
LVEF <21%	0.077	0.266	0.106	0.309	0.096			0.104	0.306	0.106	0.309	0.006	< 0.1		
Elective procedure	0.416	0.493	0.425	0.495	0.017			0.425	0.495	0.425	0.495	0.000	< 0.1		
Urgent/emergent procedure	0.537	0.499	0.518	0.501	-0.038			0.526	0.500	0.518	0.501	-0.016	< 0.1		
Salvage procedure	0.047	0.211	0.057	0.233	0.045			0.049	0.216	0.057	0.233	0.035	< 0.1		
Previous PCI	0.196	0.397	0.167	0.374	-0.076			0.170	0.376	0.167	0.374	-0.007	<0.1		

(Continued)

Adult: Mechanical Circulatory Support

1216.e28

The Journal of Thoracic and Cardiovascular Surgery • November 2020

	Unadjusted sample							Adjusted sample							
	Periph VA-EC n = 5 patie	eral 2MO, 536 nts	Cent VA-EC n = 2 patie	ral MO, 245 nts	i	Balance neasures		Periph VA-EC n = 263 patie	eral MO, 3,224 nts	Cent VA-EC n = 2 patie	ral 2MO, 245 nts		Balance me	asures	
Variable	Mean	SD	Mean	SD	Mean difference	Variance ratio	KS	Mean	SD	Mean	SD	Mean difference	Mean difference threshold	Variance ratio	KS
Critical preoperative state	0.368	0.483	0.322	0.468	-0.096			0.316	0.466	0.322	0.468	0.014	<0.1		
Preoperative cardiac arrest	0.037	0.190	0.078	0.268	0.150			0.062	0.242	0.078	0.268	0.057	<0.1		
Ventricular tachycardia or fibrillation	0.049	0.215	0.045	0.208	-0.017			0.041	0.199	0.045	0.208	0.019	<0.1		
Aborted sudden death	0.024	0.154	0.008	0.090	-0.179			0.009	0.092	0.008	0.090	-0.004	< 0.1		
Preoperative IABP	0.077	0.266	0.086	0.281	0.033			0.083	0.277	0.086	0.281	0.009	< 0.1		
Preoperative inotropes	0.289	0.454	0.278	0.449	-0.026			0.268	0.444	0.278	0.449	0.021	< 0.1		
Preoperative mechanical ventilation	0.090	0.286	0.090	0.287	0.001			0.083	0.276	0.090	0.287	0.025	<0.1		
EuroSCORE II	0.147	0.160	0.176	0.193	0.151	1.461	0.112	0.171	0.204	0.176	0.193	0.026	< 0.1	0.894	0.085
Clopidogrel or ticagrelor use	0.140	0.347	0.127	0.333	-0.040			0.126	0.333	0.127	0.333	0.002	<0.1		
PAPs <30 mm Hg	0.502	0.501	0.551	0.498	0.099			0.545	0.499	0.551	0.498	0.012	< 0.1		
PAPs 30-55 mm Hg	0.323	0.468	0.261	0.440	-0.140			0.269	0.444	0.261	0.440	-0.018	< 0.1		
PAPs >55 mm Hg	0.175	0.381	0.188	0.391	0.032			0.186	0.390	0.188	0.391	0.005	< 0.1		
CAD	0.435	0.496	0.498	0.501	0.126			0.498	0.501	0.498	0.501	-0.001	< 0.1		
Aortic valve stenosis	0.174	0.379	0.204	0.404	0.076			0.197	0.398	0.204	0.404	0.018	< 0.1		
Aortic valve regurgitation	0.175	0.381	0.135	0.342	-0.119			0.134	0.341	0.135	0.342	0.002	<0.1		
Mitral valve stenosis	0.058	0.234	0.045	0.208	-0.062			0.048	0.214	0.045	0.208	-0.014	< 0.1		
Mitral valve regurgitation	0.308	0.462	0.286	0.453	-0.049			0.295	0.457	0.286	0.453	-0.021	<0.1		
Tricuspid valve regurgitation	0.151	0.359	0.094	0.292	-0.196			0.100	0.300	0.094	0.292	-0.020	<0.1		
Ascending aortic aneurysm	0.080	0.272	0.061	0.240	-0.079			0.054	0.226	0.061	0.240	0.031	<0.1		

Mariscalco et al

	Unadjusted sample							Adjusted sample							
	Peripl VA-E(n = patie	heral CMO, 536 ents	Cen VA-E n = pati	tral CMO, 245 ents	'n	Balance neasures		Perip VA-E n = 20 pati	heral CMO, 63,224 ents	Cen VA-E n = pati	tral CMO, 245 ents		Balance me	asures	
Variable	Mean	SD	Mean	SD	Mean difference	Variance ratio	KS	Mean	SD	Mean	SD	Mean difference	Mean difference threshold	Variance ratio	KS
Aortic arch aneurysm	0.017	0.129	0.020	0.142	0.026			0.016	0.127	0.020	0.142	0.030	<0.1		
Type A aortic dissection	0.080	0.272	0.078	0.268	-0.010			0.081	0.273	0.078	0.268	-0.011	<0.1		
Pulmonary thromboembolism	0.019	0.135	0.004	0.064	-0.228			0.005	0.068	0.004	0.064	-0.008	<0.1		
Active endocarditis	0.099	0.299	0.131	0.338	0.094			0.121	0.327	0.131	0.338	0.029	< 0.1		
Type of surgical procedures - isolated CABG	0.218	0.414	0.269	0.445	0.115			0.265	0.442	0.269	0.445	0.009	<0.1		
Type of surgical procedures - isolated valvular surgery	0.216	0.412	0.196	0.398	-0.052			0.200	0.401	0.196	0.398	-0.011	<0.1		
Type of surgical procedures - surgery on thoracic aorta	0.1026	0.304	0.090	0.287	-0.045			0.084	0.277	0.090	0.287	0.022	<0.1		
Type of surgical procedures - other*	0.463	0.499	0.445	0.498	-0.036			0.451	0.499	0.445	0.498	-0.012	<0.1		
ACC time	125.754	77.586	121.241	76.270	-0.059	0.966	0.054	120.534	74.936	121.241	76.266	0.009	< 0.1	1.036	0.034
CPB time	219.787	116.352	241.310	122.550	0.176	1.109	0.118	239.215	122.026	241.310	122.547	0.017	< 0.1	1.009	0.089
Failure to wean from CPB	0.343	0.475	0.469	0.500	0.252			0.448	0.498	0.469	0.500	0.042	<0.1		
Heart failure after weaning from CPB	0.511	0.500	0.408	0.493	-0.209			0.421	0.495	0.408	0.493	-0.025	<0.1		
Ventricular arrhythmias after weaning from CPB	0.078	0.269	0.082	0.274	0.012			0.085	0.280	0.082	0.274	-0.013	<0.1		
Cardiac arrest after weaning from CPB	0.078	0.269	0.090	0.287	0.040			0.095	0.294	0.090	0.287	-0.018	<0.1		

1216.e30 The Journal of Thoracic and Cardiovascular Surgery • November 2020

	Unadjusted sample							Adjusted sample							
	Periph VA-EC n = 5 patier	eral MO, 536 nts	Cent VA-EC n = 2 patie	ral MO, 245 nts	I	Balance neasures		Periph VA-EC n = 26 patie	ieral 2MO, 3,224 nts	Cent VA-EC n = 2 patie	ral 2MO, 245 nts		Balance me	asures	
Variable	Mean	SD	Mean	SD	Mean difference	Variance ratio	KS	Mean	SD	Mean	SD	Mean difference	Mean difference threshold	Variance ratio	KS
Respiratory failure after weaning from CPB	0.078	0.269	0.053	0.225	-0.113			0.057	0.233	0.053	0.225	-0.018	<0.1		
Septic shock after weaning from CPB	0.026	0.160	0.004	0.064	-0.345			0.005	0.071	0.004	0.064	-0.015	<0.1		
VA-ECMO inserted immediately after surgery - no	0.429	0.495	0.310	0.464	-0.257			0.327	0.470	0.310	0.464	-0.036	<0.1		
VA-ECMO inserted immediately after surgery - after weaning attempts with inotropes only	0.463	0.499	0.437	0.497	-0.052			0.443	0.498	0.437	0.497	-0.012	<0.1		
VA-ECMO inserted immediately after surgery - after weaning attempts with IABP	0.106	0.309	0.253	0.436	0.337			0.230	0.422	0.253	0.436	0.052	<0.1		
VA-ECMO inserted immediately after surgery - after weaning attempts with Impella	0.002	0.043	0.000	0.000				0.000	0.000	0.000	0.000	0.000	<0.1		
VA-ECMO inserted later after surgery - no	0.340	0.474	0.208	0.407	-0.323			0.221	0.416	0.208	0.407	-0.032	<0.1		
VA-ECMO inserted later after surgery - after weaning attempts with Inotropes only	0.088	0.283	0.102	0.303	0.047			0.106	0.308	0.102	0.303	-0.012	<0.1		

	Unadjusted sample							Adjusted sample							
	Periph	neral	Cent	ral				Periph	eral	Cent	ral				
	VA-EC	смо,	VA-EC	смо,				VA-EC	MO,	VA-EC	ЗMO,				
	n = 5	536	$\mathbf{n} = 2$	245]	Balance		n = 26.	3,224	$\mathbf{n} = 2$	245				
	patie	nts	patie	nts	measures		patients patients		nts	Balance measures					
													Mean		
					Mean	Variance						Mean	difference	Variance	
Variable	Mean	SD	Mean	SD	difference	ratio	KS	Mean	SD	Mean	SD	difference	threshold	ratio	KS
VA-ECMO inserted	0.002	0.043	0.000	0.000				0.000	0.000	0.000	0.000	0.000	< 0.1		
later after surgery -															
after weaning															
attempts with IABP															

VA-ECMO, Venoarterial extracorporeal membrane oxygenation; SD, standard deviation; KS, Kolmogorov–Smirnov statistics; BMI, body mass index; eGFR, estimated glomerular filtration rate; ARDS, acute respiratory distress syndrome; MI, myocardial infarction; NYHA, New York Heart Association (class); LVEF, left ventricular ejection fraction; PCI, percutaneous coronary intervention; IABP, intra-aortic balloon pump; EuroSCORE II, European System for Cardiac Operative Risk Evaluation II; PAP, pulmonary artery pressure; CAD, coronary artery disease; CABG, coronary artery bypass grafting; ACC, aortic crossclamp; CPB, cardiopulmonary bypass. *Other includes combined procedures and other major cardiac surgical procedures

 TABLE E10. Baseline characteristics and operative data in the overall series after the removal of patients switched from central to peripheral cannulation

		Overall series	
	Peripheral VA-ECMO,	Central VA-ECMO,	
Variables*	n = 536 patients	n = 222 patients	P value
Demographics			
Age, y	63.9 (12.3)	61.3 (13.9)	<.001
Female	172 (32.1)	30 (31.5)	.95
BMI, kg/m ²	26.7 [23.9-30.0]	26.3 [23.0-29.8]	.31
BMI $>30 \text{ kg/m}^2$	136 (25.4)	54 (24.3)	.83
Cardiac status			
Elective procedure	223 (41.6)	92 (41.4)	1.000
Urgent/emergent procedure	288 (53.7)	117 (52.7)	.86
Salvage procedure	25 (4.7)	13 (5.9)	.62
Critical preoperative state	197 (36.8)	75 (33.8)	.49
Preoperative IABP	41 (7.6)	19 (8.6)	.78
Previous cardiac surgery	123 (22.9)	58 (26.1)	.40
CCS angina class IV	99 (18.5)	49 (22.1)	.29
NYHA class I-II	182 (34.0)	86 (38.7)	.24
NYHA class III-IV	354 (66.0)	136 (61.3)	.24
Previous MI	181 (33.8)	85 (38.3)	.27
Previous PCI	105 (19.6)	38 (16.7)	.40
Recent myocardial infarction	128 (23.9)	63 (28.4)	.23
LVEF >50%	228 (42.5)	81 (36.5)	.14
LVEF 30%-50%	178 (33.2)	72 (32.4)	.91
LVEF 21%-30%	89 (16.6)	46 (20.7)	.21
LVEF $< 21\%$	41 (7.6)	23 (10.4)	.28
Active endocarditis	53 (9.9)	30 (13.5)	.19
PAPs >55 mm Hg	94 (17.5)	45 (20.3)	.43
Comorbidities			
Diabetes	131 (24.4)	62 (27.9)	.36
Diabetes type			.56
No diabetes	405 (75.6)	160 (72.1)	
IDDM	68 (12.7)	34 (15.3)	
NIDDM	63 (11.8)	28 (12.6)	
Hemoglobin g/L	125.6 (21.5)	124 4 (22.8)	.51
eGFR mL/min/1 73 m ²	66 5 [49 1-85 3]	65.0 [45.2-82.6]	.39
Dialysis	25 (4.7)	6 (2.7)	.29
Stroke	39 (7.3)	19 (8 6)	
Extracardiac arterionathy	77 (14 4)	38 (17 1)	30
Pulmonary disease	73 (13.6)	34 (15 3)	62
Atrial fibrillation	143 (26 7)	48 (21.6)	.02
Poor mobility	29(54)	14 (6 3)	.17
EuroSCORE II. score	0.09 [0.04-0.19]	0.10 [0.03-0.27]	.26
Indications for cardiac surgery			
CAD	233 (43.5)	110 (49.5)	.15
Aortic valve stenosis	93 (17.4)	43 (19.4)	.58
Aortic valve regurgitation	94 (17.5)	33 (14 9)	43
Mitral valve stenosis	31 (5.8)	11 (5 0)	78
Mitral valve regurgitation	165 (30.8)	66 (29 7)	84
Tricuspid valve regurgitation	81 (15 1)	22 (9 9)	07
Ascending aortic aneurysm	43 (8 0)	15 (6.8)	.07
Aortic arch aneurysm	9 (1 7)	5 (2 3)	.00
Type A aortic dissection	43 (8 0)	19 (8.6)	.01
Pulmonary thromboembolism	10 (1 9)	1 (0.5)	.52
r annonary anomotenioonism	10(1.)	1 (0.5)	.23

TABLE E10. Continued

	Overall series								
	Peripheral VA-ECMO,	Central VA-ECMO,							
Variables*	n = 536 patients	n = 222 patients	P value						
Cardiac procedures									
CABG	257 (47.9)	116 (52.3)	.32						
Off-pump CABG	8 (1.5)	3 (1.4)	1.00						
On-pump CABG	242 (45.1)	110 (49.5)	.31						
Beating-heart CABG on CPB	7 (1.3)	4 (1.8)	.85						
SIMA	162 (30.2)	66 (29.7)	.96						
BIMA	62 (11.6)	9 (4.1)	.002						
Incomplete revascularization	59 (11.0)	29 (13.1)	.49						
AVR	144 (26.9)	61 (27.5)	.93						
Aortic valve repair	6 (1.1)	1 (0.5)	.65						
MVR	129 (24.1)	46 (20.7)	.37						
Mitral valve repair	66 (12.3)	28 (12.6)	1.00						
TVR	15 (2.8)	7 (3.2)	.98						
Tricuspid valve repair	60 (11.2)	17 (7.7)	.18						
Bentall-De Bono procedure	53 (9.9)	21 (9.5)	.96						
Aortic valve sparing	4 (0.7)	6 (2.7)	.07						
Ascending aortic replacement	35 (6.5)	19 (8.6)	.41						
Aortic arch replacement	28 (5.2)	11 (5.0)	1.000						
PTE	10 (1.9)	0 (0.0)	.09						
Other major cardiac surgery	8 (1.5)	8 (3.6)	.12						
Intraoperative data									
ACC time, min	113.0 [75.0-158.0]	108.5 [68.0-161.0]	.58						
CPB time, min	200.0 [123.0-280.50]	220.0 [154.3-302.0]	.02						

VA-ECMO, Venoarterial extracorporeal membrane oxygenation; *BMI*, body mass index; *IABP*, intra-aortic balloon pump; *CCS*, Canadian Cardiovascular Society (class); *NYHA*, New York Heart Association (class); *MI*, myocardial infarction; *PCI*, percutaneous coronary intervention; *LVEF*, left ventricular ejection fraction; *PAP*, pulmonary artery pressure; *IDDM*, insulin-dependent diabetes mellitus; *NIDDM*, non-insulin-dependent diabetes mellitus; *eGFR*, estimated glomerular filtration rate; *EuroSCORE II*, European System for Cardiac Operative Risk Evaluation II; *CAD*, coronary artery (use); *AVR*, aortic valve replacement; *MVR*, mitral valve replacement; *TVR*, tricuspid valve replacement; *PTE*, pulmonary thromboendarteretomy; *ACC*, aortic crossclamp. *Continuous data are presented as mean (standard deviation) or median [interquartile range]; categorical variables as number (percent).

TABLE E11. VA-ECMO-related characteristics and indications after the removal of patients switched from central to peripheral cannulation

	Overall series							
	Peripheral VA-ECMO,	Central VA-ECMO,						
Variables*	n = 536 patients	n = 222 patients	P value					
Indications for VA-ECMO								
Failure to wean from CPB	184 (34.3)	106 (47.7)	.001					
Heart failure after weaning from CPB	274 (51.1)	93 (41.9)	.03					
Ventricular arrhythmias after CPB weaning	42 (7.8)	18 (8.1)	1.00					
Cardiac arrest after weaning from CPB	42 (7.8)	16 (7.2)	.88					
Respiratory failure after weaning from CPB	42 (7.8)	11 (5.0)	.21					
ARDS after weaning from CPB	22 (4.1)	0 (0)	.005					
Septic shock after weaning from CPB	14 (2.6)	1 (0.5)	.10					
Pulmonary embolism	1 (0.2)	4 (1.8)	.05					
Timing of ECMO insertion								
VA-ECMO inserted immediately after surgery			< 001					
No	230 (42.9)	68 (30.6)						
After weaning attempts with inotropes only	248 (46.3)	97 (43.7)						
After weaning attempts with IABP	57 (10.6)	57 (25.7)						
After wearing attempts with Impella	1 (0.2)	0 (0 0)						
VA-ECMO inserted later after surgery	1 (0.2)	0 (0.0)	001					
No	306 (57.1)	154 (69.4)						
After weaping attempts with inotropes only	182 (34 0)	43 (19.4)						
After wearing attempts with IABP	47 (8 8)	25 (11.3)						
After wearing attempts with Impella	1 (0.2)	0						
Computation ECMO data	1 (0.2)	Ŭ						
Driver enterial consulation for VA ECMO			< 001					
Primary arterial cannulation for VA-ECMO		222 (100)	<.001					
Ascending aorta		222 (100)						
Femoral aftery	407 (87.1)	0 (0.0)						
Another altery	69 (12.9)	0 (0.0)	< 001					
Primary venous cannulation for VA-ECMO	525 (97.6) 8 (1.5)	80 (30.0)	<.001					
LADD	8 (1.3)	1 (0.3)	.40					
IABP	272 (60.4)	121 (54.5)	.002					
NO	572 (09.4) 41 (7.6)	121(34.3)						
LADD immediately after surgery with ECMO	41 (7.0)	32(14.4)						
IABP immediately after surgery without ECMO	40 (8.0)	24 (10.8)						
IABP inserted later after surgery with ECMO	21 (3.9)	1/(7.7)						
IABP Inserted later after surgery without ECMO	13(2.8)	9 (4.1)						
IABP preoperatively inserted	41 (7.0)	19 (8.0)	25					
	521 (00.1)	222 (100)	.55					
NO	2 (0.6)	222 (100)						
Impella inserted later after surgery with ECMO	3(0.0)	0 (0.0)						
L of t ventricular venting $\mathbf{p}_{1}(\theta_{1})$	2 (0.4)	0 (0.0)	< 001					
No.	517 (06 5)	190 (91 1)	<.001					
NO Dicht superior pulmonomy voin	12 (2.4)	26 (16 2)						
L oft vontrioular anax	15 (2.4) 5 (0.0)	2 (0.0)						
Another site	3 (0.9) 1 (0.2)	2 (0.9)						
Another site	1 (0.2)	4 (1.8)						
Other data								
Duration of ECMO support, d	6.0 [4.0-11.0]	6.0 [3.0-9.0]	.16					
Arterial pH before VA-ECMO	7.30 (0.14)	7.30 (0.13)	.94					
Arterial lactate before VA-ECMO,	6.0 [3.4-9.9]	5.6 [3.1-8.9]	.31					
Target ACT during VA-ECMO, s	200 [180-220]	180 [150-200]	<.001					

VA-ECMO, Venoarterial extracorporeal membrane oxygenation; *CPB*, cardiopulmonary bypass; *ARDS*, acute respiratory distress syndrome; *IABP*, intra-aortic balloon pump; *ACT*, activated clotting time. *Continuous data are presented as mean (standard deviation) or median [interquartile range]; categorical variables as number (percent).

JUI L	
	1
	4

TABLE E12. Principal primary and secondary outcomes after VA-ECMO implantation after the removal of patients switched from central to peripheral cannulation

	Ov	Doubly robust adjustment				
	Peripheral VA-ECMO,	Central VA-ECMO,				
Variables*	n = 536 patients	n = 222 patients	P value	Odds ratio	95% CI	P value
Primary end point						
In-hospital mortality	327 (61.0)	158 (71.2)	.01	1.55	1.05-2.27	.03
Secondary end points						
Reoperation for bleeding/tamponade	191 (35.6)	122 (55.0)	<.001	1.95	1.35-2.82	<.001
Stroke	93 (17.4)	50 (22.5)	.12	1.11	0.71-1.74	.64
Dialysis	286 (53.4)	109 (49.1)	.34	0.82	0.57-1.18	.29
Liver failure	205 (38.2)	53 (23.9)	<.001	0.61	0.41-0.791	.01
Multiorgan failure	279 (52.1)	98 (44.1)	.06	0.84	0.59-1.21	.36
DSWI	19 (3.5)	10 (4.5)	.68	1.05	0.42-2.61	.91
Vascular access-site infection	60 (11.2)	5 (2.3)	<.001	0.18	0.07-0.48	<.001
Sepsis	140 (26.1)	35 (15.8)	.003	0.61	0.38-0.96	.03
Peripheral vascular complications	49 (9.1)	13 (5.9)	.18	0.51	0.25-1.02	.06
RBC units transfused, U	15.0 [7.0-28.0]	20.5 [12.0-38.0]	<.001	6.02‡	2.15‡	.01‡
More than 9 RBC units transfused	344 (64.2)	184 (82.9)	<.001	2.49	1.61-3.84	<.001
Chest drains output 24 h after surgery, mL	780 [500-1450]	1760 [850-2210]	<.001	681‡	139.74‡	<.001‡
ICU stay, d	12.0 [5.0-24.0]	11.0 [4.0-20.0]	.17	-0.97‡	1.63‡	.55‡
Hospital stay, d	17.0 [5.8-35.0]	13.0 [5.0-25.0]	.02	-4.64‡	2.29‡	.04‡
More than 10 d on VA-ECMO	128 (23.9)	49 (22.1)	.66	0.81	0.52-1.26	.34
Successful weaning from VA-ECMO	271 (50.6)	96 (43.2)	.08	0.75	0.52-1.08	.12
Postoperative VAD or heart transplant	17 (3.2)	12 (5.4)	.21	2.07	0.94-4.53	.07

VA-ECMO, Venoarterial extracorporeal membrane oxygenation; *CI*, confidence interval; *DSWI*, deep sternal wound infection; *RBC*, red blood cell; *ICU*, intensive cardia unit; *VAD*, left ventricular assist device. *Continuous data are presented as mean (standard deviation) or median [interquartile range]; categorical variables as number (percent). †Reference for the events: central VA-ECMO group. ‡Linear regression expressed as standard regression coefficient, standard error, and *P* value.

Adjusted sample

Adult: Mechanical Circulatory Support

12	TABLE E13. Covariate balance
16.e36	
The Journal	- Variable
of	Age
The	Female
ora	BMI
cic	Hemoglobin
and	eGFR
ũ	Dialysis
ard	Diabetes
iov	Poor mobility
asci	Stroke
ulaı	Atrial fibrillation
r Surg	ARDS after weaning from CPB
gery	Extracardiac arteriopathy
• 1	Pulmonary disease
VOV	Previous cardiac surgery
'em	Previous MI
bei	NYHA class I-II
• 20	LVEF >50%
20	LVEF 30%-50%
	LVEF 21%-30%

analyses in unweighted and weighted samples for patients receiving VA-ECMO after the removal of patients switched from central to peripheral cannulation

Unadjusted sample

	Peripheral VA-ECMO, n = 536 patients		Central VA-ECMO, n = 222 patients		Balance measures			VA-ECMO, n = 254.78 patients		Central VA-ECMO, n = 222 patients		Balance measures			
Variable	Mean	SD	Mean	SD	Mean difference	Variance ratio	KS	Mean	SD	Mean	SD	Mean difference	Mean difference threshold	Variance ratio	KS
Age	63.846	12.323	61.262	13.888	-0.186	1.270	0.136	61.844	14.358	61.262	13.888	-0.042	< 0.1	0.936	0.111
Female	0.321	0.467	0.315	0.466	-0.012			0.313	0.465	0.315	0.466	0.005	< 0.1		
BMI	27.263	5.025	26.974	5.421	-0.053	1.164	0.087	27.017	4.963	26.974	5.421	-0.008	< 0.1	1.193	0.081
Hemoglobin	125.591	21.485	124.437	22.821	-0.051	1.128	0.034	125.135	21.128	124.437	22.821	-0.031	< 0.1	1.167	0.057
eGFR	68.561	30.992	66.685	27.822	-0.067	0.806	0.059	67.236	31.594	66.685	27.822	-0.020	< 0.1	0.776	0.072
Dialysis	0.047	0.211	0.027	0.163	-0.121			0.028	0.164	0.027	0.163	-0.004	< 0.1		
Diabetes	0.244	0.430	0.279	0.450	0.078			0.272	0.446	0.279	0.450	0.016	< 0.1		
Poor mobility	0.054	0.226	0.063	0.244	0.037			0.064	0.246	0.063	0.244	-0.005	< 0.1		
Stroke	0.073	0.260	0.086	0.280	0.046			0.088	0.283	0.086	0.280	-0.007	< 0.1		
Atrial fibrillation	0.267	0.443	0.216	0.413	-0.123			0.223	0.417	0.216	0.413	-0.017	< 0.1		
ARDS after weaning from CPB	0.041	0.199	0.000	0.000				0.000	0.000	0.000	0.000		<0.1		
Extracardiac arteriopathy	0.144	0.351	0.171	0.378	0.073			0.171	0.377	0.171	0.378	0.002	< 0.1		
Pulmonary disease	0.136	0.343	0.153	0.361	0.047			0.152	0.360	0.153	0.361	0.004	< 0.1		
Previous cardiac surgery	0.230	0.421	0.261	0.440	0.072			0.256	0.437	0.261	0.440	0.011	< 0.1		
Previous MI	0.338	0.473	0.383	0.487	0.093			0.380	0.486	0.383	0.487	0.007	< 0.1		
NYHA class I-II	0.340	0.474	0.387	0.488	0.098			0.387	0.488	0.387	0.488	0.001	< 0.1		
LVEF >50%	0.425	0.495	0.365	0.483	-0.125			0.367	0.483	0.365	0.483	-0.004	< 0.1		
LVEF 30%-50%	0.332	0.471	0.324	0.469	-0.017			0.326	0.470	0.324	0.469	-0.004	< 0.1		
LVEF 21%-30%	0.166	0.373	0.207	0.406	0.101			0.206	0.405	0.207	0.406	0.003	< 0.1		
LVEF <21%	0.077	0.266	0.104	0.305	0.089			0.101	0.302	0.104	0.305	0.008	< 0.1		
Elective procedure	0.416	0.493	0.414	0.494	-0.003			0.420	0.495	0.414	0.494	-0.011	< 0.1		
Urgent/emergent procedure	0.537	0.499	0.527	0.500	-0.021			0.525	0.500	0.527	0.500	0.004	< 0.1		
Salvage procedure	0.047	0.211	0.059	0.235	0.051			0.055	0.228	0.059	0.235	0.016	< 0.1		
Previous PCI	0.196	0.397	0.167	0.374	-0.078			0.173	0.379	0.167	0.374	-0.017	< 0.1		
Critical preoperative state	0.368	0.483	0.338	0.474	-0.063			0.327	0.470	0.338	0.474	0.024	< 0.1		
Preoperative cardiac arrest	0.037	0.190	0.081	0.274	0.160			0.066	0.249	0.081	0.274	0.055	< 0.1		

	Unadjusted sample							Adjusted sample							
	Peripl VA-EC	neral CMO,	Cent VA-EC n = 1	tral CMO, 222	Palar			Peripl VA-EC n = 25	heral CMO, 54.78	Cent VA-EC n = 1	tral CMO, 222		Palanas ma		
	II = 550	patients	patie		Dalai	ice measure		pane		patients		Mean		asures	
Variable	Mean	SD	Mean	SD	Mean difference	Variance ratio	KS	Mean	SD	Mean	SD	Mean difference	difference threshold	Variance ratio	KS
Ventricular tachycardia or fibrillation	0.049	0.215	0.041	0.198	-0.040			0.035	0.185	0.041	0.198	0.027	<0.1		
Aborted sudden death	0.024	0.154	0.009	0.095	-0.161			0.009	0.095	0.009	0.095	-0.001	< 0.1		
Preoperative IABP	0.077	0.266	0.086	0.280	0.032			0.083	0.277	0.086	0.280	0.009	< 0.1		
Preoperative inotropes	0.289	0.454	0.293	0.456	0.008			0.279	0.449	0.293	0.456	0.030	< 0.1		
Preoperative mechanical ventilation	0.090	0.286	0.095	0.293	0.017			0.086	0.281	0.095	0.293	0.029	<0.1		
EuroSCORE II	0.147	0.160	0.181	0.198	0.173	1.530	0.117	0.175	0.207	0.181	0.198	0.033	< 0.1	0.915	0.081
Clopidogrel or ticagrelor use	0.140	0.347	0.122	0.328	-0.056			0.124	0.330	0.122	0.328	-0.006	< 0.1		
PAPs <30 mm Hg	0.502	0.501	0.550	0.499	0.096			0.549	0.499	0.550	0.499	0.002	< 0.1		
PAPs 30-55 mm Hg	0.323	0.468	0.248	0.433	-0.173			0.255	0.437	0.248	0.433	-0.016	< 0.1		
PAPs >55 mm Hg	0.175	0.381	0.203	0.403	0.068			0.197	0.398	0.203	0.403	0.015	< 0.1		
CAD	0.435	0.496	0.496	0.501	0.121			0.493	0.501	0.496	0.501	0.004	< 0.1		
Aortic valve stenosis	0.174	0.379	0.194	0.396	0.051			0.191	0.394	0.194	0.396	0.007	< 0.1		
Aortic valve regurgitation	0.175	0.381	0.149	0.357	-0.075			0.148	0.356	0.149	0.357	0.002	< 0.1		
Mitral valve stenosis	0.058	0.234	0.050	0.218	-0.038			0.051	0.220	0.050	0.218	-0.006	< 0.1		
Mitral valve regurgitation	0.308	0.462	0.297	0.458	-0.023			0.298	0.458	0.297	0.458	-0.001	< 0.1		
Tricuspid valve regurgitation	0.151	0.359	0.099	0.300	-0.174			0.102	0.303	0.099	0.300	-0.008	< 0.1		
Ascending aortic aneurysm	0.080	0.272	0.068	0.252	-0.050			0.066	0.248	0.068	0.252	0.008	< 0.1		
Aortic arch aneurysm	0.017	0.129	0.023	0.149	0.039			0.024	0.153	0.023	0.149	-0.009	< 0.1		
Type A aortic dissection	0.080	0.272	0.086	0.280	0.019			0.090	0.286	0.086	0.280	-0.015	< 0.1		
Pulmonary thromboembolism	0.019	0.135	0.005	0.067	-0.211			0.005	0.070	0.005	0.067	-0.005	< 0.1		
Active endocarditis	0.099	0.299	0.135	0.343	0.106			0.125	0.331	0.135	0.343	0.031	< 0.1		
Type of surgical procedures - isolated CABG	0.218	0.414	0.252	0.435	0.078			0.251	0.434	0.252	0.435	0.003	<0.1		
Type of surgical procedures - isolated valvular surgery	0.216	0.412	0.198	0.400	-0.046			0.194	0.396	0.198	0.400	0.011	<0.1		

(Continued)

Adult: Mechanical Circulatory Support

TABLE E13. Continued

	Unadjusted sample						Adjusted sample								
	Peripheral VA-ECMO, n = 536 patients		Cen VA-E0 n = pati	Central VA-ECMO, n = 222 patients		Balance measures		Perip VA-E n = 2 pati	bheral CMO, 254.78 ents	Cen VA-E(n = pati	tral CMO, 222 ents	Balance measures		asures	
Variable	Mean	SD	Mean	SD	Mean difference	Variance ratio	KS	Mean	SD	Mean	SD	Mean difference	Mean difference threshold	Variance ratio	KS
Type of surgical procedures - surgery on thoracic aorta	0.103	0.304	0.099	0.300	-0.012			0.102	0.303	0.099	0.300	-0.010	<0.1		
Type of surgical procedures - other*	0.463	0.499	0.451	0.499	-0.025			0.453	0.499	0.451	0.499	-0.006	<0.1		
ACC time	125.754	77.586	120.487	72.683	-0.073	0.878	0.050	121.671	74.627	120.487	72.683	-0.016	< 0.1	0.949	0.048
CPB time	219.787	116.352	238.784	116.750	0.163	1.007	0.125	238.264	120.932	238.784	116.75	0.005	< 0.1	0.932	0.090
Failure to wean from CPB	0.343	0.475	0.478	0.501	0.268			0.463	0.500	0.478	0.501	0.029	< 0.1		
Heart failure after weaning from CPB	0.511	0.500	0.419	0.495	-0.187			0.425	0.495	0.419	0.495	-0.012	<0.1		
Ventricular arrhythmias after weaning from CPB	0.078	0.269	0.081	0.274	0.010			0.082	0.276	0.081	0.274	-0.005	<0.1		
Cardiac arrest after weaning from CPB	0.078	0.269	0.072	0.259	-0.024			0.075	0.264	0.072	0.259	-0.013	<0.1		
Respiratory failure after weaning from CPB	0.078	0.269	0.050	0.218	-0.133			0.053	0.225	0.050	0.218	-0.018	<0.1		
Septic shock after weaning from CPB	0.026	0.160	0.005	0.067	-0.322			0.006	0.074	0.005	0.067	-0.015	<0.1		
VA-ECMO inserted immediately after surgery - no	0.429	0.495	0.306	0.462	-0.266			0.317	0.466	0.306	0.462	-0.022	<0.1		
VA-ECMO inserted immediately after surgery - after weaning attempts with inotropes only	0.463	0.499	0.437	0.497	-0.052			0.444	0.498	0.437	0.497	-0.015	<0.1		
VA-ECMO inserted immediately after surgery - after weaning attempts with IABP	0.106	0.309	0.257	0.438	0.344			0.239	0.427	0.257	0.438	0.041	<0.1		
VA-ECMO inserted immediately after surgery - after weaning attempts with Impella	0.002	0.043	0.000	0.000				0.000	0.000	0.000	0.000	0.000	<0.1		

		Unadjusted sample							Adjusted sample							
	Periph VA-EC n = 536 p	eral MO, patients	CentralIdVA-ECMO,D,n = 222entspatients		Balance measures		Peripheral VA-ECMO, n = 254.78 patients		Central VA-ECMO, n = 222 patients		Balance measures					
Variable	Mean	SD	Mean	SD	Mean difference	Variance ratio	KS	Mean	SD	Mean	SD	Mean difference	Mean difference threshold	Variance ratio	KS	
VA-ECMO inserted later after surgery - no	0.340	0.474	0.194	0.396	-0.368			0.201	0.401	0.194	0.396	-0.018	<0.1			
VA-ECMO inserted later after surgery - after weaning attempts with Inotropes only	0.088	0.283	0.113	0.317	0.079			0.116	0.321	0.113	0.317	-0.011	<0.1			
VA-ECMO inserted later after surgery - after weaning attempts with IABP	0.002	0.043	0.000	0.000				0.000	0.000	0.000	0.000	0.000	<0.1			

VA-ECMO, Venoarterial extracorporeal membrane oxygenation; SD, standard deviation; KS, Kolmogorov–Smirnov statistics; BMI, body mass index; eGFR, estimated glomerular filtration rate; ARDS, acute respiratory distress syndrome; CPB, cardiopulmonary bypass; MI, myocardial infarction; NYHA, New York Heart Association (class); LVEF, left ventricular ejection fraction; PCI, percutaneous coronary intervention; IABP, intra-aortic balloon pump; EuroSCORE II, European System for Cardiac Operative Risk Evaluation II; PAP, pulmonary artery pressure; CAD, coronary artery disease; CABG, coronary artery bypass grafting; ACC, aortic crossclamp. *Other includes combined procedures and other major cardiac surgical procedures.

Successful weaning from

Postoperative VAD or Heart

VA-ECMO

transplant

51 (41.8)

5 (4.1)

.56

.78

	Peri	pheral VA-ECMO		Central VA-ECMO						
	Low-volume,	High-volume,		Low-volume,	High-volume,					
Variables*	n = 164 patients	n = 372 patients	P value	n = 123 patients	n = 122 patients	P value				
Primary end point										
In-hospital mortality	110 (67.1)	217 (58.3)	.07	93 (75.6)	83 (68.0)	.24				
Secondary end points										
Reoperation for bleeding/ tamponade	60 (36.6)	131 (35.2)	.84	75 (61.0)	62 (50.8)	.14				
Stroke	27 (16.5)	66 (17.7)	.81	31 (25.2)	24 (19.7)	.38				
Dialysis	65 (39.6)	221 (59.4)	<.001	52 (42.3)	71 (58.2)	.01				
Liver failure	49 (29.9)	156 (41.9)	.01	25 (20.3)	35 (28.7)	.17				
Multiorgan failure	87 (53.0)	192 (51.6)	.83	64 (52.0)	47 (38.5)	.05				
DSWI	6 (3.7)	13 (3.5)	1.00	2 (1.6)	8 (6.6)	.10				
Vascular access–site infection	10 (6.1)	50 (13.4)	.02	1 (0.8)	6 (4.9)	.12				
Sepsis	23 (14.0)	117 (31.5)	<.001	17 (13.8)	22 (18.0)	.47				
Peripheral vascular complications	9 (5.5)	40 (10.8)	.07	9 (7.3)	11 (9.0)	.80				
RBC units transfused, U	15 [8-28]	15 [7-27]	.47	19 [13-39]	22 [10-38]	.65				
More than 9 RBC units transfused	105 (64.0)	239 (64.2)	1.00	109 (88.6)	94 (77.0)	.03				
Chest drains output 24h after surgery, mL	1116 [610-1280]	800 [500-1341]	.03	1790 [863-1960]	1580 [766-2385]	.68				
ICU stay, d	9.5 [4.0-22.25]	13.0 [5.0-24.25]	.06	11.0 [5.5-19.0]	13.0 [3.0-23.0]	.69				
Hospital stay, d	13.0 [5.0-30.25]	18.0 [6.0-38.25]	.09	13.0 [6.00-25.0]	14.0 [4.0-27.75]	.95				
More than 10 d on VA-FCMO	27 (16 5)	101 (27.2)	01	24 (19 5)	33 (27.0)	21				

TABLE E14. Primary and secondary end points after peripheral and central VA-ECMO implantation stratified by institutional volume

VA-ECMO, Venoarterial extracorporeal membrane oxygenation; DSWI, deep sternal wound infection; RBC, red blood cell; ICU, intensive cardia unit; VAD, ventricular assist device. *Continuous data are presented as median [interquartile range]; categorical variables as number (percent). †High-volume centers are defined as per >50 cases of postcardiotomy VA-ECMO implanted during the study period.

.94

.08

57 (46.3)

7 (5.7)

189 (50.8)

8 (2.2)

82 (50.0)

9 (5.5)

Insertion							
Outcomes*	Peripheral VA-ECMO, n – 184 patients	Central VA-ECMO, n – 115 patients	<i>P</i> value	Odds ratio	95% CI	<i>P</i> value	P †
Outcomes	n – 104 patients		1 value	1410	75 70 CI		¹ interaction+
Failure to wean from CPB in							
the operating room							
In-hospital mortality	127 (69)	90 (78.3)	.11	2.02	1.12-3.63	.02	.58
Reoperation for	77 (41.8)	62 (53.9)	.06	1.59	0.99-2.56	.06	.75
bleeding/tamponade							
More than 9 RBC units	130 (70.7)	96 (83.5)	.02	2.20	1.21-3.99	.01	.07
transfused							
Successful weaning from	80 (43.5)	44 (38.3)	.44	0.68	0.41-1.13	.13	.80
VA-ECMO							
	Peripheral VA-ECMO,	Central VA-ECMO,		Odds			
Outcomes*	n = 274 patients	n = 100 patients	P value	Ratio [†]	95% CI	P value	P _{interaction} ‡
Heart failure after weaning							
from CPB							
In-hospital mortality	155 (56.6)	68 (68.0)	.06	2.04	1.21-3.42	.007	.80
Reoperation for	88 (32.1)	55 (55.0)	<.001	2.67	1.64-4.34	<.001	.88
bleeding/tamponade							
More than 9 RBC units	164 (59.9)	85 (85.0)	<.001	3.92	2.11-7.29	<.001	.41
transfused							
Successful weaning from	154 (56.2)	50 (50.0)	.34	0.66	0.41-1.07	.09	.87
VA-ECMO							

TABLE E15. Subgroup analysis for mortality and bleeding according to peripheral and central VA-ECMO with reference to timing of ECMO insertion

VA-ECMO, Venoarterial extracorporeal membrane oxygenation; *CI*, confidence interval; *CPB*, cardiopulmonary bypass; *RBC*, red blood cell. *Continuous data are presented as mean (standard deviation) or median [interquartile range]; categorical variables as number (percent). \dagger Reference for the events: central VA-ECMO group. Model adjusted for sex, age, previous cardiac surgery, preoperative left ventricular ejection fraction, coronary artery bypass grafting, history of stroke, urgent/emergent status, and arterial lactate pre-ECMO insertion ≥ 6 mmol/L. $\ddagger P_{\text{interaction}}$: *P* value for main interaction effect using likelihood ratio test fitting the models with and without interaction terms.

ADULT

IABLE E16. Demographic and preoperative characteristics of the studies included in the systematic review*												
				Number of								
Study (author, y)	Design	Country	Study period	patients	Age, y	Male	BMI	COPD	Redo	EuroSCORE II	Emergency	CABG
Ko et al, 2002 ^{E1}	Retr. Monoc.	Taiwan	1994-2000	76	57 ± 16	63.2	_	_	-		_	56.6
Rastan et al, 2010 ^{E2}	Retr. Monoc.	Germany	1996-2008	517	64 ± 11	71.5	-	13.0	-	$21.6\pm20.7\ddagger$	39.7	64.5
Pokersnik et al, 2012 ^{E3}	Retr. Monoc.	USA	2005-2010	49	65 ± 13	67.3	_	12.2	55.1	_	_	67.4
Unosowa et al, 2012 ^{E4}	Retr. Monoc.	Japan	1992-2007	47	64 ± 13	74.5	23.2 ± 3.3	-	8.5	-	46.8	51.1
Mikus et al, 2013 ^{E5}	Retr. Monoc.	Italy	2007-2011	14	52 ± 19	64.3	27.9 ± 5.0	14.3	28.6	_	42.9	21.4
Loforte et al, 2014 ^{E6}	Retr. Multic.	Italy	2006-2012	118	61§	64.4	-	-	33.8	25.7‡,§	-	57.6
Papadopoulos et al, 2015 ^{E7}	Retr. Monoc.	Germany	2001-2013	360	62 ± 17	76.1	_	8.9	-	_	_	55.3
Zhao et al, 2015 ^{E8}	Retr. Monoc.	China	2004-2012	24	59 ± 12	79.2	-	-	-	_	-	83.3
Khorsandi et al, 2016 ^{E9}	Retr. Multic.	UK	1995-2015	23	60 ± 15	85.2	_	_	17.4	_	_	39.1
Mazzeffi et al, 2016 ^{E10}	Retr. Monoc.	USA	2010-2015	23	57 ± 15	60.9	-	-	-	_	-	30.4
Biancari et al, 2017 ^{E11}	Retr. Multic.	Europe/Arabia	2005-2016	148	65 ± 9	78.4	_	16.9	-	19.2 ± 17.7	54.1	100.0
Guihaire et al, 2017 ^{E12}	Retr. Monoc.	France	2005-2014	92	-	57.6	-	-	25.0	-	35.9	13.0
Raffa et al, 2017 ^{E13}	Retr. Monoc.	The Netherlands	2007-2017	83	65§	65.1	26.6 ± 5.35	12.5	20.9	6.6 ± 9.9	38.4	34.2
Slottosh et al, 2017 ^{E14}	Retr. Monoc.	Germany	2008-2016	100	58 ± 15	76.0	26.9 ± 4.9	9.4	20.0	_	37.0	69.0
Zhong et al, 2017 ^{E15}	Retr. Monoc.	China	2009-2016	36	50 ± 12	91.7	25.4 ± 4.3	_	41.7	_	25.0	0.0

. Т

BMI, Body mass index; COPD, chronic obstructive pulmonary disease; EuroSCORE II, European System for Cardiac Operative Risk Evaluation II; CABG, coronary artery bypass grafting; Retr., retrospective; Monoc., mono-center; Multic., multicenter. *Data are expressed as mean and standard deviation for continuous variables, and as percentage for categorical variables. †Isolated CABG or CABG with concomitant cardiac procedures are all included. ‡Expressed as Logistic EuroSCORE II. §Expressed as mean only, no standard deviation provided. ||Patients with for postcardiotomy ECMO n = 100 among a total 139 ECMO patients; other variables refer to the entire patient cohort.

ADDE ET/. Detailed Ecoro characteristics of the studies included in the systematic review											
		ECMO cannu	ulation								
	Number of		Axillary	ECMO at	ECMO	Weaning					
Study (author, y)	patients	Central (aorta)	artery	surgery	duration, d	success	IABP				
Ko et al, 2002 ^{E1}	76	19.7	0.0	51.3	4.1 ± 1.3	48.7	76.0				
Rastan et al, 2010 ^{E2}	517	60.8	11.9	41.9	3.3 ± 2.9	63.5	74.1				
Pokersnik et al, 2012 ^{E3}	49	34.7	0.0	-	-	55.1	59.2				
Unosowa et al, 2012 ^{E4}	47	31.9	0.0	70.2	2.7 ± 2.6	61.7	17.0				
Mikus et al, 2013 ^{E5}	14	50.0	0.0	_	9 ± 13.8	50.0	92.9				
Loforte et al, 2014 ^{E6}	118	47.5	-	-	10.8*	55.1	100.0				
Papadopoulos et al, 2015 ^{E6}	360	36.0	63.1	_	7 ± 1	58.1	31.1				
Zhao et al, 2015 ^{E7}	24	4.2	0.0	45.8	4.8 ± 2.9	66.7	87.5				
Khorsandi et al, 2016 ^{E9}	23	60.9	0.0	34.8	5.4†	-	39.1				
Mazzeffi et al, 2016 ^{E10}	23	60.9	-	13.0	3‡	60.8	_				
Biancari et al, 2017 ^{E11}	148	39.9	59.1	51.4	6.4 ± 5.6	-	32.0				
Guihaire et al, 2017 ^{E12}	92	15.2	-	46.7	-	-	27.2				
Raffa et al, 2017 ^{E13}	83	32.8	-	53.5	5.0‡	49.4	10.5				
Slottosh et al, 2017 ^{E14}	100	28.0	0.0	60.0	4.9 ± 3.3	-	83.0				
Zhong et al, 2017 ^{E15}	36	19.4	25.0	66.7	3.2 ± 1.4	-	25.0				

TABLE E17. Detailed ECMO characteristics of the studies included in the systematic review*

ECMO, Extracorporeal membrane oxygenation; *IABP*, intra-aortic balloon pump. *Data are expressed as mean and standard deviation for continuous variables, and as percentage for those categorical. †Expressed as mean only, no standard deviation provided. ‡Expressed as median only, no mean or standard deviation provided.

	<u> </u>	<u> </u>					
Study (author, y)	Mortality	Bleeding tamponade	CVA	GI complications	RRT	Limb ischemia ⁺	Sepsis
Ko et al, 2002 ^{E1}	43.4	46.1	11.8		_	43.4	_
Rastan et al, 2010 ^{E2}	75.2‡	58.0	17.4	18.8	65.0	19.9	-
Pokersnik et al, 2012 ^{E3}	67.3	71.4	6.1	-	32.7	-	-
Unosowa et al, 2012 ^{E4}	70.2	70.2	21.3	-	31.9	25.5	-
Mikus et al, 2013 ^{E5}	50.0	64.3	14.3	-	57.1	-	42.9
Loforte et al, 2014 ^{E6}	53.4	58.4	16.9	-	55.1	5.9	22.0
Papadopoulos et al, 2015 ^{E7}	70.0 <u>§</u>	41.1	11.9	16.1	61.1	13.1	-
Zhao et al, 2015 ^{E8}	66.7	16.7	8.3	20.8	29.2	8.3	45.8
Khorsandi et al, 2016 ^{E10}	65.2	8.7	21.7	-	26.0	21.7	-
Mazzeffi et al, 2016 ^{E11}	69.6	8.7	17.4	-	47.8	-	18.8
Biancari et al, 2017 ^{E11}	64.2	41.9	23.6	10.8	45.3	10.8	24.3
Guihaire et al, 2017 ^{E12}	63.0	19.6	3.3	-	-	9.8	-
Raffa et al, 2017 ^{E13}	62.8	46.4	20.2	15.5	29.8	10.7	21.4
Slottosh et al, 2017 ^{E14}	71.0	63.0	-	-	-	-	-
Zhong et al, 2017 ^{E15}	50.0	25.0	11.1	_	25.0	13.9	13.9

TABLE E18. Postoperative complications following ECMO implantation in the included studies*

CVA, Cerebrovascular accident; *GI*, gastrointestinal; *RRT*, renal-replacement therapy. *Data are expressed in percentages. †Lower-limb ischemia defined as an acute impaired circulation to the lower extremities, necessitating endovascular or surgical revascularization, and/or major surgery (ie, amputation). ‡Adjusted mortality for central VA-ECMO cannulation: OR, 0.91 (95% CI, 0.59-1.40, *P* = .666). §Adjusted mortality for central VA-ECMO cannulation: OR, 1.5 (95% CI, 0.45-1.85, *P* = .37).

TABLE E19. Quality assessment of the included studies

	Newcastle-Ottawa Scale ^{E78}			Cochrane risk of bias analysis ^{E79}					USPSTF
Study (author/year)	Selection	Comparability	Outcome	Selection bias	Performance bias	Detection bias	Attrition bias	Reporting bias	design-specific quality criteria ^{E80}
Ko et al, 2002 ^{E1}	**	**	***	Low	High	High	High	High	Poor
Rastan et al, 2010 ^{E2}	**	**	***	High	Low	Low	High	High	Fair
Pokersnik et al, 2012 ^{E3}	**	**	**	High	Low	Low	Low	Low	Fair
Unosowa et al, 2012 ^{E4}	**	**	**	High	High	Unclear	High	Unclear	Poor
Mikus et al, 2013 ^{E5}	**	**	***	Low	Low	Low	Low	Low	Fair
Loforte et al, 2014 ^{E6}	**	*	**	Low	Low	Low	Low	Low	Poor
Papadopoulos et al, 2015 ^{E7}	**	**	**	High	High	Low	High	High	Poor
Zhao et al, 2015 ^{E8}	**	**	**	High	High	Low	High	High	Fair
Khorsandi et al, 2016 ^{E9}	*	*	**	High	High	Low	Low	Low	Poor
Mazzeffi et al, 2016 ^{E10}	***	***	***	High	Low	Low	Low	Low	Fair
Biancari et al, 2017 ^{E11}	***	**	***	Low	High	Low	Low	Low	Fair
Guihaire et al, 2017 ^{E12}	***	*	***	Low	High	Low	Low	Low	Fair
Raffa et al, 2017 ^{E13}	**	*	**	Low	High	High	Low	Low	Fair
Slottosch et al, 2017 ^{E14}	***	***	**	High	High	Low	High	High	Fair
Zhong et al, 2017 ^{E15}	**	**	**	High	High	Low	High	High	Poor

USPSTF, US Preventive Services Task Force; *, 1; **, 2; ***, 3.

1216.e44 The Journal of Thoracic and Cardiovascular Surgery • November 2020